BioUnalm

Visit Blog Website

367 posts · 340,044 views

Blog de divulgación y actualidad científica especializado en las ciencias de la vida. Agrupación de Estudiantes de Biología de la Universidad Nacional Agraria La Molina, Lima, Perú.

David Castro
359 posts

Sort by: Latest Post, Most Popular

View by: Condensed, Full

  • December 24, 2011
  • 06:37 PM
  • 889 views

Estudio demuestra que fósiles de Doushantuo no son embriones ni bacterias

by David Castro in BioUnalm



Se trataría de Holozoos, organismos eucariotas que se desarrollaron después del último ancestro común entre animales y hongos. Todo empezó en 1998, cuando dos investigadores de la Universidad de Harvard y uno de la Universidad de Pekín anunciaron el descubrimiento de unos fósiles bien preservados, de unos 570 millones de años de antigüedad, en la Formación de Doushantuo. Todo indicaba que estos fósiles, que se formaron en pleno Período Ediacárico, parecían ser los embriones de los primeros animales que poblaron la Tierra. Aunque originalmente fueron descritos como colonias de algas, las imágenes de microscopía electrónica mostraban un patrón de desarrollo caracterizado por una división celular continua sin aumento de tamaño (palintomía), el cual puede ser observado claramente en los primeros estadíos del desarrollo embrionario de los animales modernos. Cuando el espermatozoide fecunda el óvulo, el cigoto se divide en dos células, luego en cuatro, después en ocho, y así sucesivamente, sin embargo el tamaño total del embrión (en este caso la blástula) sigue siendo el mismo. Esta hipótesis se vino abajo en el 2006, cuando Hagadorn et al. usaron la microscopía tomográfica de rayos X de sincrotrón (srXTM) —una técnica no destructiva que escanea las estructuras internas de fósiles o restos arqueológicos, en tres dimensiones y con una resolución micrométrica— para analizar los fósiles de Doushantuo. Gracias a ella pudieron identificar que las células tenían núcleo, confirmando así su origen eucariota; pero no tenían una capa externa de células diferenciadas (epitelio) que aparece durante el desarrollo embrionario. Aún así, no se podía descartar la idea que fuera algún tipo de forma desarrollo embrionario primitivo. En el 2007 la hipótesis sufrió otro golpe bajo cuando Bailey et al. encontraron un fósil de una bacteria del azufre (Thiomargarita sp.) de 600 millones de años de antigüedad que mostraba un patrón estructural similar en forma y tamaño a los fósiles encontrados en Doushantuo. Sin embargo, unos meses después, nuevas observaciones hechas por Yin et al. mostraban que los fósiles de Donshuantuo estaban envueltos por una pared tipo cística, como si fuera un embrión en un estado de diapausa. La hipótesis volvía a la vida. Ahora, un grupo de investigadores liderados por la Dra. Therese Huldtgren y el paleontólogo Stefan Bengtson del Museo de Historia Natural de Suecia demostraron que estos fósiles presentaban características incompatibles con los embriones animales y que su patrón de desarrollo era similar al observado en los Holozoos —grupo evolutivo hermano de los hongos que dio origen a los animales, los coanoflagelados y los mesomicetozoeos— donde la función de la palintomía es la formación de esporas (propágulos) que serán liberados para germinar y formarán nuevos individuos, según reportaron el 23 de Diciembre en Science. Huldtgren et al. también usaron la srXTM para obtener imágenes de gran resolución de los fósiles de Doushantuo. En ellos volvieron a observar la presencia de un núcleo por cada célula y en algunos casos mostraban una morfología alargada o de mancuerna, lo que indicaría que la célula estaba en pleno proceso de división. Todos estos datos apuntaban a lo mismo: se trataba de células eucariotas. Los investigadores no pudieron observar una diferenciación de las células ni la formación de capas germinales en ninguno de los fósiles, características típicas de un desarrollo embrionario. Sin embargo, en algunos casos, se observó que los agregados celulares adquirían una forma similar al de un maní (alargadas con una leve constricción en el centro). Esto indicaría que estas células cumplían con un ciclo de vida: la célula madre empezaba crecer y adquirir una cubierta externa para formar una estructura cística, luego empezaba a dividirse de forma constante sin aumentar de tamaño (palintomía) formando una estructura similar a una blástula pero sin diferenciación de tejidos ni presencia de capas germinales, finalmente la envoltura cística adquiría una forma de maní y liberaba todas las células que contenía como si fueran esporas (propágulos) y el ciclo se volvía a repetir. Entonces, si no es un embrión de un animal primitivo y tampoco es una bacteria, ¿qué rayos es?. Las características que presenta el fósil es típico de un Holozoo, un grupo de organismos que se originó a partir del último ancestro común entre hongos y animales pero antes de la aparición del ancestro común de todos los animales que conocemos en la actualidad. Por su ciclo de vida, pudo haber sido muy parecido a los ictiospóreos (mesomicetozoeo), un parásito estricto de los peces, aunque este carece de los ornamentos que aparecen en la envoltura cística de los fósiles de Doushantuo. Éstos resultados ahondan más el misterio de la aparición de los animales durante el período Ediacárico, sobre todo porque al no ser fósiles de embriones los encontrados en Doushantuo, quiere decir que los animales aparecieron mucho después y que su radiación y diversificación fue más rápida de lo imaginada. Referencia: Huldtgren, T., Cunningham, J., Yin, C., Stampanoni, M., Marone, F., Donoghue, P., & Bengtson, S. (2011). Fossilized Nuclei and Germination Structures Identify Ediacaran "Animal Embryos" as En... Read more »

  • September 1, 2011
  • 12:27 AM
  • 888 views

Scale—volviendo los tejidos transparentes

by David Castro in BioUnalm



Uno de los retos más grandes dentro de las investigaciones biológicas es poder ver las células que conforman los tejidos internos de los animales entre tres dimensiones y con una resolución que hasta ahora sólo era obtenida con animaciones computarizadas. Un grupo de investigadores japoneses han desarrollado una novedosa solución acuosa llamada Scale que permite volver los tejidos en estructuras ópticamente transparentes, sin perder su forma ni función. Además, han usado esta sustancia para estudiar a fondo el cerebro de ratones a una escala subcelular y con una resolución sin precedentes. El artículo fue publicado ayer en Nature Neuroscience. Una de las cosas más difíciles es observar la disposición estructural y la geometría que adoptan las células en los tejidos que forman órganos como el hígado, los riñones o el cerebro. Una de las formas de obtener imágenes tridimensionales es usando técnicas de tomografía por resonancia magnética, la cual carece de una resolución a nivel celular y subcelular. Otra forma es rebanando (seccionando) un determinado tejido en tajadas sumamente delgadas y observándolas bajo un microscopio electrónico. Si bien esta última técnica permite reconstruir la estructura tridimensional de un tejido, el proceso es sumamente laborioso y costoso —sólo se puede analizar una pequeña porción de un determinado tejido. El seccionamiento óptico usando proteínas fluorescentes permite acelerar el proceso y reducir los costos. Sin embargo, su poder de penetración está limitado por la dispersión de la luz. Por ejemplo, la microscopia de escaneo láser confocal sólo tiene un poder de penetración de 150um, mientras que la microscopía de excitación de dos fotones puede alcanzar los 800um. Si nos preguntamos cómo podríamos solucionar el problema de la dispersión de la luz la respuesta más lógica sería incrementando la transparencia de los tejidos, para que la luz pueda penetrar más distancia antes de refractarse. En el mercado existen sustancias que clarifican los tejidos, por ejemplo, el FocusClear® —muy costoso para grandes muestras. También existen otras más caseras como la sucrosa al 60% con PBS o el BABB (una mezcla de alcohol bencílico y benzoato bencílico), la cual es más usada por su facilidad y bajo costo. Sin embargo, estas técnicas pueden interferir y atenuar la fluorescencia o muchas veces no vuelven los tejidos lo suficientemente transparentes como para hacer buenos estudios tridimensionales. Un grupo de investigadores japoneses liderados por el Dr. Hiroshi Hama desarrollaron una solución llamada Sca/e, la cual está compuesta por urea 4M, glicerol 10% y Triton X-100 0.1%. [Creo que estos insumos están presentes en cualquier laboratorio]. Hama y sus colaboradores probaron el Scale en embriones de ratones y obtuvieron la imagen ubicada al inicio de esta entrada. Para probar si la fluorescencia era atenuada por la solución de Scale, los investigadores probaron la técnica de clarificación en una línea celular humana (HeLa). Los resultados mostraron que la fluorescencia no era atenuada. Una vez obtenidos estos resultados, probaron la técnica in vivo. Para ello usaron una línea de ratones transgénicos (YFP-H) con la capacidad de expresar la proteína amarilla fluorescente (YFP) en las neuronas. Usando el microscopio de excitación de dos fotones lograron hacer la reconstrucción tridimensional hasta una profundidad de 4mm! Pero, cuando se marcó fluorescentemente de manera exclusiva un cierto grupo de neuronas, el poder de penetración fue mucho mayor. Hama et al. marcaron los axones de las neuronas del corpus callosum, que es el encargado de comunicar ambos hemisferios del cerebro. Para ello usaron el Microscopio Macro Confocal AZ-C1 de NIkón y lograron obtener imágenes a una profundidad de 35mm. Con esto queda demostrado los usos potenciales de esta técnica, sobre todo para revelar cómo se ensambla el sistema nervioso y como se forman las conexiones interneuronales —también conocido como el conectoma— en el cerebro. Por ejemplo, Hama y sus colaboradores usaron otra proteína fluorescente, esta vez roja, para estudiar la asociación de las vasos capilares con las células madre neuronales. También se usaron otras técnicas específicas de marcación fluorescente para observar otros arreglos neuronales en el cerebro. Las posibilidades de visualización son muchas. Los investigadores desarrollaron también otras variantes del Scale, usando diferentes concentraciones de glicerol para reducir la expansión observada en los tejidos sometidos al Scale original. Por otro lado, usando urea más concentrada se lograba reducir el tiempo de clarificación de varias semanas y hasta meses, a tan sólo una semana. Además, la clarificación con Scale es reversible ya que bastaba con un lavado con PBS para restaurar la opacidad original del tejido. Sin dudas, es un procedimiento sencillo y económico que ayudará a entender más a fondo el desarrollo y función del cerebro en los animales superiores. Además, Scale nos ayudará a ver cómo se organizan las neuronas y cómo interactúan entre ellas en el cerebro, sin la necesidad de seccionarlo. La conectómica ahora tiene un gran aliado. Referencia: ... Read more »

Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., Fukami, K., Sakaue-Sawano, A., & Miyawaki, A. (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience. DOI: 10.1038/nn.2928  

  • November 11, 2011
  • 08:31 PM
  • 887 views

Descubren receptor usado por el parásito de la malaria para invadir los glóbulos rojos

by David Castro in BioUnalm



La malaria es una enfermedad que afecta a millones de personas en el mundo, sobre todo, en países tropicales como el nuestro. El agente causante de esta enfermedad es un protozoario llamado Plasmodium falciparum, quien invade los glóbulos rojos de la sangre (eritrocitos) a diestra y siniestra, destruyéndolos rápidamente. A inicios de año, vimos que un grupo de investigadores australianos usaron la microscopía electrónica, la inmunofluorescencia y el modelamiento en 3D, para observar y describir, en tiempo real todo, el proceso de invasión del parásito. Sin embargo, para que el parásito pueda invadir el eritrocito, antes debe reconocerlo. Por lo general, el reconocimiento se da a través de ciertas proteínas que se expresan tanto en la superficie de los glóbulos rojos (receptores) como en la superficie del parásito (antígeno o ligando). En los últimos años, se han descrito una gran cantidad de interacciones del tipo receptor-ligando. Sin embargo, hasta ahora ninguna de ellas ha demostrado ser esencial en el proceso invasivo. En el año 2009, otro grupo de investigadores australianos descubrieron una proteína esencial para la invasión del parásito en el glóbulo rojo. La proteína se llama PfRh5 y era expresada en las roptrias —unos organelos secretores situados la superficie apical del protozoo. Lamentablemente, los australianos no pudieron identificar a la proteína receptora presente en la superficie de los eritrocitos que es reconocida por la PfRh5. En un estudio publicado esta semana en Nature, un grupo investigadores británicos del Instituto Sanger de Cambridge han descrito a la proteína receptora clave usada por P. falciparum para reconocer e invadir los glóbulos rojos, dando nuevas perspectivas para el desarrollo de agentes terapéuticos mucho más efectivos. Lo primero que hicieron la Dra. Cécile Crosnier y sus colegas fue determinar qué proteínas del eritrocito presentaban un dominio ectópico (porción de la proteína que se expresa hacia la superficie de la célula y que podría ser usada como señal receptora). De un total de 40 proteínas candidatas, sólo una de ellas, la basigina (BSG), mostró una buena interacción con la PfRh5. [Por cierto: la BSG también es conocida como CD147 ó M6]. Las basiginas están implicadas en diferentes funciones fisiológicas, incluyendo la implantación del embrión en el útero, la espermatogénesis (ó formación de los espermatozoides) y el desarrollo de la retina. En nuestro cuerpo, esta proteína puede estar presente de dos formas: una larga, con tres dominios ectópicos IgSF (BSG-L); y una corta, con dos IgSF (BSG-S). Además, BSG es una glicoproteína, o sea posee azúcares en determinados aminoácidos de su secuencia, que podrían favorecer su reconocimiento por parte del parásito. Los científicos observaron que PfRh5 interactuaba de la misma manera con las dos isoformas de BSG, pero sólo lo hacía cuando al menos dos de los dominios IgSF (1 y 2) estuvieran presentes. Cuando BSG-S era modificado y se le quitaba uno de sus dos dominios IgSF, ya no había una interacción con PfRh5. Por otro lado, cuando se removían los azúcares de los aminoácidos de BSG, la interacción con PfRh5 no se veía afectada. Pero, ¿realmente la proteína BSG está involucrada en la invasión de los glóbulos rojos?. Si la respuesta es afirmativa, debería de haber una reducción o inhibición de la invasión si la proteína BSG fuera bloqueada antes de la infección. Crosnier et al. dieron una respuesta a la interrogante con tres ingeniosos experimentos. El primero consistía en aislar y purificar la basigina, para luego añadirla al medio de cultivo donde se llevaría a cabo la infección. Las BSG libres competirían con las BSG de las células por unirse a la proteína PfRh5 del parásito, reduciendo así su capacidad de invasión. Los resultados obtenidos fueron los esperados: la invasión fue fuertemente inhibida en presencia de un competidor. El segundo experimento consistía en bloquear la basigina usando anticuerpos contra ella (anti-BSGs). Las pruebas preliminares hechas por Crosnier y sus colaboradores ya habían demostrado que los anti-BSG bloqueaban la unión de la basigina a la PfRh5. Entonces, cuando aplicaron el anticuerpo en los medios de cultivo antes de ser inoculados con nueve cepas diferentes de P. falciparum, observaron que la invasión fue completamente inhibida en todas las cepas experimentadas. Este resultado, en particular, es bastante alentador porque esta estrategia demostró ser efectiva contra diferentes variantes de la proteína PfRh5. El tercer experimento consistía usar un ARN de interferencia para bloquear la expresión del gen que codifica para la basigina. Como era de esperarse, las células BSG— mostraron ser resistentes a la invasión por parte del protozoario. En fin, los resultados obtenidos en los tres experimentos apuntan hacia lo mismo: la basigina es esencial para el reconocimiento e invasión del Plasmodium falciparum a los glóbulos rojos. Las implicancias de este trabajo son grandes. En primer lugar, se ha identificado la proteína clave usada por el P. falciparum para reconocer e invadir los glóbulos rojos. En segundo lugar, se ha demostrado que los anticuerpos contra la basigina (anti-BSG) son más que suficientes para inhibir por completo la entrada del parásito al glóbulo rojo, al menos en el laboratorio. Y tercero, se puede analizar el gen que codifica para la basigina en diferentes poblaciones humanas que habitan en zonas expuestas a los mosquitos transmisores de la malaria para ver si presentan variantes que les confieren resistencia a la enfermedad. Referencia: Crosnier, C., Bustamante, L., Bartholdson, S., Bei, A., Theron, M., Uchikawa, M., Mboup, S., Ndir, O., Kwiatkowski, D., Duraisingh, M., Rayner, J., & Wright, G. (2011). Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum Nature DOI: 10.1038/nature10606 Imagen | Flickr @flashlightfish ... Read more »

Crosnier, C., Bustamante, L., Bartholdson, S., Bei, A., Theron, M., Uchikawa, M., Mboup, S., Ndir, O., Kwiatkowski, D., Duraisingh, M.... (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. DOI: 10.1038/nature10606  

  • May 14, 2010
  • 02:24 AM
  • 882 views

Se presenta el primer borrador del genoma del Neandertal

by David Castro in BioUnalm

Uhm… yo se que muy tarde me uní a la fiesta, muchos medios ya informaron sobre este importante avance en el entendimiento de la evolución humana. El viernes pasado se publicó en Science el primer borrador del genoma del Neandertal. Un par de artículos muy extensos —sobre todo el primero— que muestran resultados inesperados que ya lo comentaré más adelante. Borrador quiere decir que es un primer secuenciamiento, de seguro con muchos errores y algunas regiones incompletas, pero lo suficientemente bueno para hacer comparaciones con secuencias de humanos modernos y especies relacionadas. Y ahora, ¿por donde empezamos?. Todos los estudios sobre fósiles de nuestros ancestros homínidos se basaban en características morfológicas y proporcionales, hasta que en los 90’s Svante Pääbo se enfocó más al estudio del ADN antiguo. Pero, después de más de 50000 años, ¿habrá algo de ADN que extraer?. El ADN es una de las estructuras más estables que existen y en los huesos fósiles pueden haber cantidades considerables de moléculas de ADN, pero muchas de ellas cortadas o degradadas. Si la preservación del fósil fue buena —por ejemplo, bajo el permafrost de las montañas de los países nórdicos— el ADN estará mejor preservado. Sin embargo, otro problema es la contaminación, tanto con ADN de humanos modernos como de bacterias que viven normalmente en los suelos. Y, ¿para que secuenciar el genoma del Neandertal?. Una de las respuestas es que los humanos modernos y los Neandertales llegaron a vivir al mismo tiempo y quedaría abierta la posibilidad de que haya habido algún tipo de cruce entre estas dos especies, para esto es importante analizar su genoma y compararlo con el de los humanos modernos. Algunos científicos creen que esto haya sido posible, mientras que otros dicen que los humanos modernos vinieron de África y desplazaron a los Neandertales sin que haya habido cruces entre ellos. Hasta ahora, la evidencia genética descartaba que haya habido mezcla de genes entre los humanos modernos y los Neandertales… hasta ahora.   Ahora tenemos el primer borrador del genoma del Neandertal, el cual tiene más de 3 mil millones de nucleótidos (3000Mb). Pääbo et al. recolectaron huesos de tres chicas Neandertal que vivieron en Croacia hace 38000 años (Figura). A partir de estos fósiles se pudo extraer el ADN y se secuenció. Al hacer un alineamiento y comparar el genoma del Neandertal con el genoma  de cinco humanos modernos de diferentes partes del mundo. Los investigadores encontraron que los europeos y asiáticos comparten del 1 al 4% de su ADN nuclear con los Neandertales, pero los africanos no. Este descubrimiento ha sido uno de los más fascinantes de esta investigación y sugiere que hubo cruce entre los primeros humanos modernos con los Neandertales después que los humanos modernos dejaran África pero antes que se diseminaran por todo Europa. Por más que pese a algunos científicos, es difícil encontrar otra explicación posible a este descubrimiento. Esto quiere decir que mucha gente que vive fuera de África tiene ADN de un homínido extinto, posiblemente “los Neandertal viven en cada uno de ellos”. San (Sur de África), Yoruba (Oeste de África), PNG (Papúa y Nueva Guinea), Han (Chino) y French (Francés) Ya tenemos el genoma del Neandertal, ahora debemos buscar que genes son lo que nos hacen “humanos modernos”, genes presentes en el Homo sapiens y no en los Neandertales. A pesar que somos de especies diferentes y distanciados por miles de años, nuestro genoma y el genoma de los Neandertales comparten el 99.84% de identidad. Conociendo estas pequeñas diferencias podemos determinar que genes han cambiado o evolucionado desde que nuestro ancestro más antiguo y los Neandertales divergieron hace unos 270000 a 400000 años. Las principales diferencias se encontraron en genes relacionados con el metabolismo, la piel, el esqueleto y el desarrollo cognitivo, pero no se pudo determinar si estos cambios tuvieron algún efecto fisiológico. Se sabe que los Neandertales y los humanos modernos coexistieron en Europa de 30000 a 45000 años atrás y en el Oriente Medio hace 80000 años, pero no se encontró rastros de mezcla cuando fueron estudiadas las secuencias del ADN mitocondrial de los Neandertales, fue por esto que los científicos decidieron que no pudo haber cruces entre Neandertales y humanos modernos con descendencia viable. Hasta el mismo Pääbo pensó, la primera vez que vio sus resultados, que este 1 a 4% se podía deber al azar o un flujo estadístico. Pero, cuando se aplicaron distintos métodos en diferentes laboratorios, en todos ellos se obtuvo los mismos resultados, confirmándose la hipótesis del cruce con descendencia viable entre los Neandertales y los humanos modernos. Estos resultados refutan las teorías que dicen que los humanos modernos salieron de África y colonizaron el mundo sin cruces con otras especies de homínidos antiguos. Sin embargo, estos resultados y descubrimientos obtenidos por Pääbo et al. no son concluyentes debido a la baja cobertura del secuenciamiento (1.3X) y la tercera parte del genoma del Neandertal sigue confuso (por algo es un borrador). Sin embargo, se aplicó una metodología novedosa para llenar los huecos dejados al hacer este primer borrador. Se usaron las secuencias parciales de Neandertales que vivieron en España, Alemania y Rusia. Además, compararon el genoma del Neandertal con el del chimpancé para determinar que variantes genéticas son las más primitivas, lo cual no se puede hacer con los genomas de humanos modernos. Los Neandertales compartían más SNPs (Polimorfismos de nucleótido simple o cambios en una sola secuencia) con los europeos y asiáticos que con los africanos. Pero, por qué los Neandertales se cruzaron con los europeos y asiáticos pero no con los africanos?. ¿Serían racistas?. Para responder a esta pregunta se deberían secuenciar genomas de más africanos de diferentes partes del continente, de repente justo en esos dos genomas secuenciados no hay evidencia de la mezcla pero en otros sí hay. Finalmente, se escaneo los genomas de humanos modernos en busca de regiones genéticas de humanos antiguos. Antes de ser comparado con el genoma del Neandertal, estos humanos modernos tenían 13 regiones genéticas que fueron inusualmente variables entre sí y que probablemente han tenido un origen evolutivo antiguo (relacionado con los Neandertales por no estar presentes en los genomas de 23 africanos-americanos). Luego al compararlos con el genoma del Neandertal observaron que de la13 regiones, 10 tenían una variante ancestral de estos genes. Entonces, después de estudiar todo estos datos se puede inferir que el escenario es que grupos de Neandertales se movieron y se unieron a pequeños grupos de humanos modernos. Y si llegaron a cruzarse y dar descendencia viable las variables genéticas persistieron por el pequeño tamaño de la población. Sin embargo, los datos genéticos obtenidos no apoya la hipótesis de que este cruce se dio hace uno 30000 a 45000 años atrás. Aún así, los cruces no fueron muchos, ¿que era lo que prevenía que se diera este cruce? De seguro que la estructura social primitiva de los primeros humanos modernos, una “barrera cultural”. El equipo de investigadores también encontró 78 SNPs que cambian la capacidad de codificar ciertas proteínas. Estas 78 modificaciones se dio en los últimos 300000 años. Al estudiar estos genes que estaban relacionados con la cura de las heridas y cicatrización, el movimiento del flagelo de los espermatozoides y la transcripción genética. Referencia: ... Read more »

Green, R., Krause, J., Briggs, A., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.... (2010) A Draft Sequence of the Neandertal Genome. Science, 328(5979), 710-722. DOI: 10.1126/science.1188021  

  • January 9, 2011
  • 04:59 PM
  • 881 views

¿Por qué las plantas florecen en primavera?

by David Castro in BioUnalm

Antes de empezar definiré qué es la vernalización. Para esto quiero que se pregunten ¿por qué la gran mayoría de plantas florecen en primavera más que en otras estaciones? Tal vez  muchos se han hecho esta pregunta cuando eran niños, tal vez otros se la sigan haciendo pero les da vergüenza preguntar. La respuesta es que las plantas, al ser sometidas a un prolongado periodo a bajas temperaturas, adquieren una competencia para producir flores, a este fenómeno se le llama vernalización. Tal vez este fenómeno no es apreciable en nuestro país y en otros países ubicados cerca al ecuador, ya que por nuestra latitud, las temperaturas no pasan de 35°C en el verano a -20°C en el invierno como en Europa o EEUU. En el Perú, generalmente van de 35°C a 22°C en la selva, de 25°C a 5°C en la sierra y de 30°C a 10°C en la costa, dependiendo si es verano o invierno, respectivamente. Además, como la duración del día y la noche tanto en verano como en invierno no se desvían más de 1 hora (11 – 13 horas), nuestra temperatura promedio por día es bastante agradable. La vernalización es ampliamente aprovechada por los horticultores, para inducir la floración de sus plantas ornamentales en cualquier momento del año, siempre y cuando tengan un vivero con la temperatura y la iluminación controlada. Los horticultores ponen a sus plantitas en ambientes fríos por unas cuantas semanas y luego las regresan al ambiente con una temperatura agradable, al cabo de unos días empiezan a florecer. En otras palabras, someten a las plantas a un invierno artificial. Es por esta razón, que en la naturaleza, las plantas florecen en primavera, justo después del invierno, para así garantizar su éxito reproductivo. Sin embargo, se desconoce las bases bioquímicas y moleculares de este fenómeno. Además, tampoco se entiende por qué se da este fenómeno sólo en el invierno y no en el otoño, donde las temperaturas también son bajas la mayoría de los días. Fue así que Jae Bok Heo y Sibum Sung, ambos investigadores de la Universidad de Texas estudiaron a profundidad cómo se da este mecanismo en la planta modelo Arabidopsis thaliana. En A. thaliana la vernalización está controlado por el locus FLC (FLOWERING LOCUS C), quien es un potente represor de la floración. Durante el invierno, la cantidad de ARN mensajero (ARNm) de FLC disminuye progresivamente. La expresión de FLC baja debido a cambios en la estructura de la cromatina. Los cambios en la cromatina están controlados por un grupo de proteínas llamadas Polycomb como la PRC2. Por si no lo recuerdan, el ADN al ser tan largo que no cabría dentro de la célula, necesita empaquetarse y compactarse. Este empaquetamiento se da gracias a la acción de unas proteínas llamadas Histonas, que sirven como sostén para que el ADN se enrolle sobre él. De esta manera se forman los cromosomas. Pero, cuando el ADN está empaquetado no puede ser transcrito y los genes no serán expresados. Pero, un reciente descubrimiento muestra que el locus FLC al ser expresado de manera inversa, genera un ARN antisentido que boquea al ARNm de FLC. Este ARN antisentido se llama COOLAIR, el cual reprime a FLC durante la primera fase de la vernalización. Entonces, para que no se pierdan, haremos un recuento cronológico. Una vez que las flores fueron fecundadas, las altas temperaturas del verano y las temperaturas templadas del otoño mantienen activa la expresión del locus FLC, reprimiendo la floración de las plantas durante estas estaciones. Cuando llega el invierno, el constante frío hace que los niveles de FLC empiecen a caer, gracias a la acción de PCR2 que modifica la cromatina y el aumento en la expresión del ARN antisentido COOLAIR que bloquea al ARNm de FLC. Sin embargo, hasta ahora no se sabía como PCR2 se unía a la cromatina para modificarla. Así que Heo & Sung identificaron otro ARN no codificante que se expresa una vez que COOLAIR alcanza su pico máximo de expresión. A este ARN le pusieron el nombre de COLDAIR (COLD ASSISTED INTRONIC NO CODING RNA). El promotor de este ARN no codificante se encuentra en el primer intrón del locus FLC (ver Figura). Recordemos que en eucariotas, los genes están conformados tanto por intrones y exones. Cuando se transcribe un gen a partir de ADN se forma un pre-ARNm, el cual posee tanto los intrones como los exones, sin embargo, los intrones no llegan a traducirse en proteínas y por lo tanto son eliminados en un proceso conocido como splicing. De esta manera el pre-ARNm pasa a ser un ARNm, compuesto de puros exones. La inducción de la expresión de COLDAIR sólo depende del frío, mas no de otros factores de transcripción codificados en el genoma de la planta, así que se acción es independiente. Pero, ¿por qué COLDAIR no se expresa en otoño cuando hay algunos días fríos? La clave es que COOLAIR modifica la cromatina de tal manera que COLDAIR pueda expresarse. Y como vimos anteriormente, la cantidad de COOLAIR aumenta gradualmente a medida que la planta está siendo sometida al frío. Cuando COOLAIR alcanza un pico máximo de expresión recién en ese momento se expresa COLDAIR y la cantidad de ARNm de FLC cae considerablemente. A este pico máximo se le llama umbral. Esta es la explicación de por qué se requiere de una prolongada exposición al frío continuo para que la planta experimente la vernalización. Para que los niveles de COOLAIR logren acumularse hasta alcanzar el pico máximo. Ahora, ¿para qué sirve COLDAIR? Ya vimos que PCR2 es necesario para la modificación de la cromatina y la posterior represión de FLC. Sin embargo, PCR2 está unida a una región del locus FLC que no afecta su transcripción, así que PCR2 debe ser movido hacia un punto donde si afecte la expresión de FLC. COLDAIR se encarga de este trabajo manteniéndose el tiempo suficiente como para que PCR2 sea capturado y realice su trabajo de modificar la cromatina. Una vez PCR2 se ubica en el locus FLC, modifica las histonas H3 mediante metilaciones, formando una estructura más estable y empieza a unirse a más PCR2 gracias a la acción de proteínas accesorias como la VIN3 y la VIL1. En este punto ya no se requiere de la presencia de COLDAIR y termina por desaparecer. Así que para el final de la vernalización ya no hay ni FLC, ni COOLAIR ni COLDAIR y la planta empieza a formar las flores, coincidiendo justo con el inicio de la primavera. Aquí les pongo un diagrama que resume todo el proceso: Las plantas están muy adaptadas a su ambiente. Su sistema de represión de FLC está sincronizado con la duración del invierno según la región donde habitan. Es por esta razón que hay muchas plantas ornamentales que nunca producirán sus bellas flores si no se encuentran en su ambiente natural. Hacer una vernalización artificial es la mejor solución. Esto también explica por qué el calentamiento global afecta el comportamiento de las plantas, ya que se ha observado que algunas plantas han adelantado sus periodos de floración durante los últimos años. Esto puede perjudicarlas enormemente ya que los insectos que las polinizan y las aves que transportan sus semillas pierden la sincronización, y hay una considerable pérdida en la biodiversidad. Aún falta determinar cómo hace el frío para inducir la expresión de COOLAIR y COLDAIR, y como FLC vuelve a su estado activo una vez que las temperaturas aumentan. Una posible explicación es que... Read more »

  • March 26, 2010
  • 04:38 AM
  • 873 views

Una nueva estrategia para producir plantas haploides

by David Castro in BioUnalm

Producir plantas haploides viables es uno de los santos griales del fitomejoramiento y la biotecnología vegetal. ¿Por qué? Porque lo que un fitomejorador quiere es que una vez que consiga una planta con un alto rendimiento, que resista enfermedades o sequías o que no tenga muchos requerimientos nutricionales, esta siga una línea homocigota. Esto quiere decir que sólo tenga un determinado alelo para cada gen, de esta manera, al auto-fertilizarla o cruzarla con otra planta similar, estas características adquiridas no se pierdan. De manera más sencilla: Recordemos que una mitad de los genes son de la madre y la otra mitad del padre. Digamos que los genes de la madre  le dan un buen rendimiento a la planta pero no soportan las sequías (AAbb), mientras que los genes del padre no tienen buen rendimiento pero soportan muy bien las sequías (aaBB). Lo que buscaremos es cruzar estas dos plantas para obtener una planta con alto rendimiento y que soporte la sequías (AAbbXaaBB). Así que después de algunos meses por fin obtenemos la planta deseada (AaBb). Pero, como la planta tiene la mitad de los genes del padre y la otra mitad de la madre, será heterocigota (tiene los genes buenos y también los genes malos, pero los como buenos son dominantes, se expresan) así que al auto-fertilizarla (AaBbXAaBb) sólo un 25% de las plantas tendrán solo los genes buenos (AABB).   Entonces, lo ideal sería hacer que la planta se quede con un sólo juego de genes (los buenos) y eliminar los malos (ab) para recién auto-fertilizarla. Para esto debemos reducir su carga genética a la mitad, volverlas haploides (AB). Pero las plantas necesitan de los dos juegos (diploides) para poder vivir, así que debemos diseñar un método para producir plantas haploides viables, que posteriormente se puedan volver nuevamente diploides (AABB), se puedan cruzar o auto-fertilizar (AABBXAABB) para generar semillas viables homocigotas (AABB). ¿Se ve sencillo no? Pero no es así. Estas características no están gobernadas solo por dos genes (AB) con dos alelos (A, a, B, b), son muchos los genes y alelos que gobiernan estas características (A1, A2, A3,…B1, B2, B3,… C1, C2, C3,… D1… E… F…), así que obtener la planta deseada se hace demasiado tedioso, con muchos años de cruzas, retrocruzas y auto-fertilizaciones. Así que, porque no desarrollar una técnica que primero parta en la mitad los genes (AaB1B2CcDdEEF1F3 [diploide] –> AB2CDEF3 y aB1cdEF1 [haploides]) para luego regenerar la diploidía (AAB2B2CCDDEEF3F3 y aaB1B1ccddEEF1F1), todos homocigotas. ¿Cuanto tiempo ahorraría esto? Por suerte hasta ahora habían dos métodos —no muy buenos— usados para volver haploides a las plantas. El primero era cultivar gametofitos (células sexuales, haploides) en medios de cultivo especiales para regenerar plantas diploides homocigotas; lamentablemente, muchas especies son recalcitrantes a este proceso. La segunda opción era hacer cruces inter-específicos (cruzar una especie con otra diferente) en el cual el genoma de uno de los parentales es eliminado; pero la base molecular de este proceso de eliminación genómica aún no se entiende. No olvidemos que hay un proceso natural para generar células haploides: la meiosis. Si nos ponemos a pensar un rato en la división celular, tanto en la mitosis como en la meiosis las cromosomas migran a través del huso acromático. Estos microtúbulos se unen a un lugar específico de los cromosomas para jalarlos a un determinado polo para formar el material genético de cada una de las células hijas, esta zona es conocida como el centrómero. Los centrómeros son reconocidos específicamente por un tipo de histona, la CENH3 en Arabidopsis thaliana (una variable de la histona tipo H3), la cual es necesaria para una buena migración de los cromosomas por el huso acromático. El mutante cenh3-1 fue aislado. Este mutante provoca la muerte del embrión, pero si está presente un CEHN3 sano complementario (dominante), la planta expresa un fenotipo silvestre (normal). Entonces, este mutante debe tener algún efecto en la migración de los cromosomas para causar la muerte del embrión, por qué no aprovecharlo de alguna manera para generar plantas haploides. Se diseñó una planta GFP-tailswap, una planta con el gen mutante cenh3-1 rescatado por una CENH3 modificada unida a la proteína verde fluorescente (proteína que brilla de color verde bajo las luz UV) para ubicar la histona. Esta planta no tiene problemas al realizar la mitosis pero son estériles al llegar la floración. Esto quiere decir que se ha visto afectada la producción de los gametos, en otras palabras, ha fallado algo en la meiosis. Cuando la planta GFP-tailswap es polinizada por una planta silvestre, entre el 80 y el 95% de los óvulos fertilizados son abortados. Se esperaba que la descendencia viable fueran heterocigotas para cenh3-1 y hemicigota para GFP-tailswap, pero 10 de las 16 plantas viables solo tenían el gen CERH3 y no el GFP-tailswap. Pero, a pesar que tenían el genotipo silvestre eran estériles. ¿Por qué? Un estudio posterior reveló que eran haploides! Si no se han perdido… que quiere decir esto? Sólo permaneció el genoma del parental silvestre mientras que el genoma del parental GFP-tailswap se perdió. Por fin se pudo crear una planta haploide, y sólo del parental silvestre. Si en vez de ese parental silvestre usamos una parental con genes excelentes, podremos obtener un haploide sólo con los genes excelentes, justo lo que estamos buscando! La explicación de esto es que hay una perturbación en la estructura del centrómero que impide la segregación de los cromosomas en la mitosis zigótica creando un embrión haploide. Al analizar el ADN plastídico se observó que el citoplasma siempre era materno. Por esta razón cuando se cruza un tipo silvestre como madre y un GFP-tailswap como padre, la proporción de haploides es menor a que si fuera al revés. Esto porque el CERH3 presente en la madre, se expresa más tempranamente que el mutante del padre, uniéndose a los cromosomas antes que el mutante, generando diploides. Si es el mutante la madre, expresará primero el gen mutante cenh3-1 y se unirá a los cromosomas antes que el CERH3, evitando la segregación de los cromosomas, generando haploides. Los diploides y los haploides son morfológicamente similares, simplemente los haploides son ligeramente más pequeños. Pero para explotar el potencial de los haploides, hay que generar diploides fértiles. Una pequeña minoría de los haploides, todos los cromosomas segregan a una de las células hijas en la Anafase I y luego las cromátides hermanas se separan en la meiosis II, generando gametos haploides (tétradas haploides). Estos pueden auto-fertilizarse generando diploides homocigóticos. También se han observado raros episodios, donde las células somáticas (tallos) se vuelven diploides espontáneamente. También se puede hacer el uso de la colchicina para regenerar los diploides. Muchos cultivos comerciales son poliploides, esto dificulta más aún los programas de fitomejoramiento. También se ha probado esta técnica para reducir la ploidía de estas especies. Para ir más allá de este descubrimiento, no sólo se podría usar al mutante cenh3-1 para generar haploides, también se podría usar ARN de interferencia para silenciar (reducir o eliminar) la función endógena del CERH3. En el maíz se ha podido inducir la haploidía usando al gen indeterminate gametophyte (ig), lamentablemente su ortólogo en A. thaliana no pudo copiar este efecto. Pero esta técnica del mutante cenh3-1 fácilmente se podría extrapolar a otras especies, además presenta muchas ventajas como: no requiere de medios de cultivo sofisticados, se puede producir tanto haploides ... Read more »

  • November 7, 2011
  • 06:03 AM
  • 873 views

El zinc y su poder antimicrobiano

by David Castro in BioUnalm



Los metales de transición forman parte de al menos el 30% de nuestras proteínas. Su principal función es dar estabilidad a la estructura proteica y coordinar las reacciones químicas que se llevan a cabo en el sitio activo de las enzimas, sobre todo en aquellas funciones donde se requiera oxidar o reducir algún compuesto. De todas ellas, el zinc es la segunda más abundante, formando parte del 10% de las proteínas humanas. Cuando ocurre algún tipo de inflamación o infección bacteriana, las células adyacentes a la zona afectada mueren y liberan el zinc presente en sus proteínas. Si bien el zinc también es un elemento esencial para las bacterias, cuando las concentraciones son elevadas les resulta sumamente tóxico. Esto quiere decir que el zinc forma parte importante de nuestra respuesta inmune. Sin embargo, aún se desconoce el del zinc sobre las bacterias. En un estudio publicado en PLoS Pathogens, un grupo de investigadores australianos liderados por Christopher McDevitt y James Paton de la Universidad de Adelaida han estudiado el efecto del zinc sobre la bacteria Streptococcus pneumoniae, demostrando que este metal bloquea el ingreso del manganeso, un factor importante en la virulencia y la resistencia al estrés oxidativo de la bacteria. S. pneumoniae (neumococo) es el agente infeccioso responsable de ciertas enfermedades respiratorias agudas, como la neumonía, que causan la muerte de miles de niños en el mundo, principalmente en los países en vías de desarrollo donde su patogenicidad está asociada a la deficiencia del Zn en sus dietas. El manganeso (Mn) es un elemento importante para las bacterias ya que regula la expresión de muchos genes asociados a la virulencia, proliferación y respuesta al estrés oxidativo causado por los radicales libres generados por los neutrófilos. El Mn ingresa a la bacteria mediante una proteína transportadora llamada Mn(II) ABC-permeasa, pero no lo hace directamente, antes debe ser capturada del entorno por medio de una proteína que interactúe con la permeasa. Esta proteína se llama PsaA (Antígeno de superficie de neumococo A). Estudios previos han demostrado que los neumococos que carecen de la proteína PsaA, ven reducida drásticamente su capacidad proliferativa y su virulencia; además, se vuelven mucho más sensibles a los radicales libres. Esto demuestra que el Mn interactúa directamente con PsaA antes de ingresar a la bacteria por medio de la permeasa. El Zn, al igual que el Mn, se presenta en un estado divalente (Zn2+). McDevitt y sus colaboradores observaron que el Zn(II) también puede interactuar con PsaA, de la misma forma como lo hace el Mn(II), aunque con una afinidad por la proteína es 100 veces menor. Sin embargo, PsaA-Zn es mucho más estable al calor que PsaA-Mn. Los investigadores creen que el Zn, cuando se presenta a elevadas concentraciones, compite con el Mn por el sitio activo de PsaA, evitando que ingrese a la bacteria a cumplir con su función. Para corroborar esta hipótesis, McDevitt et al. hicieron un experimento sencillo. Cultivaron a la bacteria en medios con diferentes proporciones de Zn y Mn (1:1; 10:1; 50:1; 100:1; 250:1 y 1000:1). Cuando la proporción de Zn con respecto al Mn era superior 100:1, la bacteria empezaba a disminuir su velocidad de proliferación y era mucho más sensible al Paraquat (una sustancia que genera radicales libres) y a la acción de los neutrófilos —un efecto similar al observado en las bacterias mutantes que carecen de la proteína PsaA. Al analizar las concentraciones internas de Zn y Mn en las bacterias que crecieron en el medio con la proporción 100:1 (Zn:Mn), los científicos observaron que la concentración de Mn era 5 veces menor a lo esperado, mientras que el Zn se mantenía constante con respecto al grupo control. Esto indicaba que el Zn, al unirse a PsaA, bloqueaba el ingreso del Mn a la bacteria al no poder unirse a su proteína transportadora. Entonces, la toxicidad del Zn se da a nivel extracelular —no necesita entrar a la bacteria para perjudicarla. Como era de esperarse, la presencia del Zn en altas concentraciones hacía que los niveles de expresión de los genes involucrados con la proliferación bacteriana, el gen que codifica la proteína PsaA y los genes que se activan en respuesta al estrés oxidativo, sean reprimidos caso por completo. He aquí su modo de acción. Pero, ¿cuál es la proporción de Zn y Mn en los tejidos infectados?. McDevitt y sus colegas determinaron las concentraciones de Zn y Mn en ratones infectados con neumococos. La proporción en los tejidos recién infectados fue de sólo 60:1 (Zn:Mn), muy por debajo de la proporción necesaria para causar daño alguno a la bacteria. Sin embargo, a las 2 horas, las proporciones en el suero de la sangre y en la mucosidad del tracto nasofaríngeo subió a 900:1 y 330:1, respectivamente. Estas proporciones son más que suficientes para controlar las infecciones causadas por neumococos y es muy probable que en humanos la respuesta sea similar. Este estudio nos da una excelente explicación a nivel fisiológico y molecular de la toxicidad del Zn sobre el neumococo. Además, nos da la base científica para justificar el enriquecimiento de los alimentos con Zn, ya que hay cerca de 2,000 millones de personas en el mundo que presentan una dieta deficiente de este metal. Referencia: McDevitt, C., Ogunniyi, A., Valkov, E., Lawrence, M., Kobe, B., McEwan, A., & Paton, J. (2011). A Molecular Mechanism for Bacterial Susceptibility to Zinc PLoS Pathogens, 7 (11) DOI: 10.1371/journal.ppat.1002357 BioUnalm



... Read more »

McDevitt, C., Ogunniyi, A., Valkov, E., Lawrence, M., Kobe, B., McEwan, A., & Paton, J. (2011) A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathogens, 7(11). DOI: 10.1371/journal.ppat.1002357  

  • January 23, 2012
  • 09:37 PM
  • 870 views

Desarrollan bacteria que produce etanol a partir de algas marrones

by David Castro in BioUnalm



Científicos insertaron los genes necesarios para la fermentación del alginato generando un rendimiento superior al 80% del esperado. Los precios de los combustibles aumentan, las reservas se van agotando y el mundo demanda cada vez más energía. Una solución a este problema son los combustibles renovables obtenidos a partir de materias primas vivas (plantas). Sin embargo, las plantas también son la base de nuestra alimentación. Sin ellas no tendríamos frutas, verduras, carnes, huevos, leche, etc. Esto nos ha llevado a una encrucijada: decidir entre usar los campos de cultivo para la producción de energía o alimentos. Por suerte el mundo cuenta con biólogos. Ellos vieron la posibilidad de usar cualquier cosa de origen vivo como materia prima, por ejemplo: los desechos de la industria agrícola, las malezas, las algas marinas, etc., y así no competir con la biomasa destinada a la alimentación. El problema es degradar y fermentar los azúcares complejos que componen estas materias primas, por ejemplo: la lignocelulosa. Los avances en la biotecnología y la ingeniería genética han permitido superar este obstáculo gracias a que conocemos ciertos organismos capaces de degradar cada uno de estos azúcares. Lo único que debemos hacer es caracterizar la enzima empleada para ese trabajo y el gen que la codifica. Luego sólo queda sintetizarlo e  insertarlo en un microorganismo que sea más fácil de manejar. Se ve un trabajo sencillo pero no lo es. Insertar una nueva reacción bioquímica a un organismo tiene sus pros y sus contras. Por un lado solucionamos el problema de degradar y fermentar la materia prima; mientras que por el otro podemos afectar reacciones propias del organismo, reduciendo así su eficiencia y rendimiento (cantidad de etanol producido por gramo de biomasa). Una de estas materias primas abundantes pero difíciles de degradar son las algas marrones, las cuales son cultivadas industrialmente con rendimientos que alcanzan las 60 toneladas métricas por hectárea por año. No requieren de mano de obra para su mantenimiento, tampoco el uso de fertilizantes y el principal uso que se le da en la actualidad es como ingrediente en la producción de alimento para animales, fertilizantes y biopolímeros. Lamentablemente los azúcares que componen esta alga —glucanos, manitol y alginato— complican su fermentación. Se han identificado enzimas que degradan los glucanos y el manitol, es más, se han desarrollado bacterias capaces de producir etanol a partir de ellos, pero los rendimientos no son muy altos debido a que se requieren de ambientes con pequeñas cantidades de oxígeno (microaeróbicos) para neutralizar el exceso de agentes reductores generados por la fermentación del manitol. Otro inconveniente es que no hay microorganismos industriales que degraden el alginato. Por suerte, en los últimos años se han identificado bacterias capaces de hacerlo. Estos cuentan con tres enzimas principales: i) la alginato liasa (Aly), que es la encargada de romper los polímeros del alginato y convertirlos en cadenas más pequeñas (de 2, 3 o 4 azúcares); ii) la oligoalginato liasa (Oal), que rompe estas pequeñas cadenas en sus azúcares individuales; y iii) una enzima que transforma estos azúcares en otros más fáciles de fermentar. Un grupo de investigadores de Bio Architecture Lab, liderados por Adam Wargacki desarrollaron una E. coli capaz de degradar y fermentar el alginato mediante la introducción de los genes requeridos para este trabajo. Según el artículo publicado el 20 de Enero en Science, la bacteria fue capaz de producir etanol con un rendimiento que alcanzó el 80% del máximo teórico predicho, abriendo el camino para la producción de bioetanol de forma más barata y sostenible. Lo primero que hicieron fue buscar una enzima capaz de romper los polímeros de alginato (Aly) y la hallaron en una bacteria conocida como Pseudoalteromonas sp. Luego buscaron la forma de secretar la enzima para que su función la realice fuera de la bacteria. Para esto fusionaron la enzima con una proteína de membrana externa de E. coli llamada antígeno 43 (Ag43). Esta proteína tiene una actividad proteasa propia, así que se aprovechó de ella para cortar la enzima Aly fusionada y liberarla al medio externo una vez que alcance la membrana extracelular. Ahora se debía buscar la forma de meter éstas pequeñas cadenas de alginato al espacio que separa la membrana extracelular de la pared celular (periplasma). Se encontraron unos transportadores de alginato en una bacteria poco conocida llamada Sphingomonas sp. Sin embargo, fue muy difícil expresar el sistema de transporte en E. coli. Fue así que los investigadores buscaron una forma alternativa de hacerlo y la encontraron en una bacteria más relacionada llamada Erwinia chrysanthemi. E. chrysanthemi tiene un sistema de transporte muy simple y usaron esta información para buscar una bacteria que degrade el alginato y que a su vez incluya éste transportador. En la base de datos del NCBI encontraron una bacteria llamada Vibrio splendidus que tenía un fragmento de ADN de casi 30,000 pares de base, el cual incluía los genes que codificaban para los transportadores, las enzimas que degradan los oligoalginatos (Oal) y las que transforman estos azúcares en unos más sencillos. Wargacki y sus colegas clonaron esta secuencia y la introdujeron en la E. coli. Como resultado obtuvieron una bacteria que degrada las algas marrones (el alginato, manitol y glucanos) sin necesidad de someterlas a un tratamiento previo de sacarificación (romper los azúcares complejos en unos más simples mediante procesos químicos, térmicos o mecánicos). La E. coli, que de por sí puede degradar el manitol y los glucanos, ahora también degradaba el alginato. La nueva bacteria fue probada en un medio con estos tres azucares en proporciones 5:8:1 (A:M:G) —la misma encontrada en las algas marrones— para determinar los parámetros óptimos de trabajo. Finalmente la probaron en cultivos de Saccharina japonica (una especie de alga marrón) y determinaron que su rendimiento de producción alcanzó el 80% del estimado teórico. Sin dudas un trabajo que genera muy buenas expectativas para el futuro de la biología sintética y la producción de biocombustibles de manera rentable y eficiente. No obstante, como todo organismo vivo, las rutas metabólicas están integradas (el producto de una reacción sirve de sustrato para otra reacción), lo que podría traer consigo algunos efectos no deseados para la bacteria o en el producto final, por ejemplo, la contaminación con acetato, lactato y otros productos secundarios de la fermentación microbiana. Si bien los investigadores cuantificaron los niveles de estas sustancias obteniendo valores casi indetectables, el proceso de escalamiento (llevarlo a volúmenes industriales) es el último obstáculo por superar, y muchas veces el más difícil, donde muchos proyectos biotecnológicos tienden a fallar. Esperemos que éste no sea el caso. Referencia: ... Read more »

Wargacki, A., Leonard, E., Win, M., Regitsky, D., Santos, C., Kim, P., Cooper, S., Raisner, R., Herman, A., Sivitz, A.... (2012) An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science, 335(6066), 308-313. DOI: 10.1126/science.1214547  

  • February 8, 2012
  • 07:55 PM
  • 866 views

¿Los Polinesios y Amerindios se mezclaron antes de la colonización de América?

by David Castro in BioUnalm



Reciente estudio basado en el análisis de antígenos leucocitarios humanos sugiere que sí. En medio del Océano Pacífico, a más de 3,500Km de las costas chilenas y 4,200Km de Tahití, se encuentra uno de los lugares más remotos y enigmáticos del planeta, la Isla de Pascua. Sus habitantes, unos 5,000 en promedio, descienden de la cultura ancestral Rapa Nui cuyo origen sigue siendo un misterio. La hipótesis más aceptada sugiere que los Rapa Nui son descendientes de los Polinesios, quienes colonizaron por primera vez la isla hace más de 800 años; mientras que otros sugieren que este episodio se dio mucho antes de los pensado. Incluso hay algunos investigadores que piensan que fueron los Amerindios los primeros habitantes de la isla, aunque esta idea es la menos aceptada porque las evidencias genéticas son inconsistentes con ella. Sin embargo, se han encontrado pruebas muy sólidas de un contacto ancestral entre estas dos poblaciones. En 1974, el etnobotánico Douglas Yen, actualmente profesor emérito de la Universidad Nacional de Australia, publicó un ensayo titulado “The Sweet Potato and Oceania”, el cual resumía los 20 años de investigación que hizo sobre la presencia del camote en ese continente. En la monografía concluía que la introducción del camote en Oceanía se dio en tres ocasiones, siendo la primera hace más de 1,000 años desde Sudamérica a través de la Isla de Pascua. Esta es una prueba muy sólida de un contacto temprano entre estos dos mundos, mucho antes de la llegada de Cristóbal Colón a América en 1492. Cabe resaltar que el centro de origen del camote (Ipomoea batatas) es el Perú hace más de 10,000 años. También se encontraron evidencias arqueológicas de la presencia de la calabaza de botella o poroto (Lagenaria siceraria) en el este de la Polinesia, las cuales datan de hace 1,000 años. En el 2005, investigadores neozelandeses hicieron un estudio genético de esta planta encontrando marcadores tanto de origen asiático como americano en las muestras obtenidas de la Polinesia. Eso no es todo, en el 2007 un grupo de investigadores neozelandeses, australianos y chilenos hallaron restos de pollos (Gallus gallus) en un centro arqueológico precolombino ubicado en la Península de Arauco (Chile). Usando la datación por radiocarbono y el análisis genético del ADN ancestral obtenido de los huesos encontrados, los investigadores determinaron que son de origen Polinesio, incuestionablemente, lo que sugiere que fueron ellos los primeros navegantes en llegar al continente americano. Ahora, un nuevo estudio publicado el 6 de Febrero en Philosophical Transactions of the Royal Society B por el inmunólogo Erik Thorsby de la Universidad de Oslo, respalda la hipótesis de un contacto ancestral entre los habitantes de la Isla de Pascua con los nativos americanos. Para su análisis, Thorsby colectó muestras de sangre de pobladores de la Isla de Pascua. Esto lo hizo en 1971 y en el 2008 con el fin de analizar marcadores específicos en el ADN nuclear (el antígeno leucocitario humano), el ADN mitocondrial y el cromosoma Y. Como era de esperarse, la mayoría de los marcadores analizados eran de origen Polinesio, incluso hubo algunos de origen europeo. Sin embargo, cuando analizó los antígenos leucocitarios se dio con la sorpresa que unos pocos individuos portaban alelos que previamente habían sido encontrados sólo en Amerindios. Pero esto no queda ahí. Al estimar el tiempo en que estos alelos fueron introducidos en los pobladores de la Isla de Pascua, Thorsby calculó que fue algunos siglos antes de que fueran deportados al Perú durante el tráfico de esclavos de los años 1860’s. “Los resultados sugieren que los Polinesios visitaron América del Sur entre los años 1400 y 1500, llevándose a algunos Amerindios de vuelta a la Isla de Pascua”, comenta Thorsby. Sin embargo es consciente que esta conclusión es todavía algo especulativa. Estos resultados en vez de esclarecer si hubo o no contacto entre los Polinesios y Amerindios antes de la colonización europea de América, generan mucho más controversia. Las evidencias arqueológicas son muy escasas, la desaparición de la cultura Rapa Nui sigue siendo un completo misterio, y la falta de restos óseos de donde se pueda extraer ADN ancestral con el cual elaborar un buen reloj molecular no ha permitido corroborar estos resultados. Referencias: Thorsby, E. (2012). The Polynesian gene pool: an early contribution by Amerindians to Easter Island Philosophical Transactions of the Royal Society B: Biological Sciences, 367 (1590), 812-819 DOI: 10.1098/rstb.2011.0319 Thorsby, E., Flåm, S., Woldseth, B., Dupuy, B., Sanchez-Mazas, A., & Fernandez-Vina, M. (2009). Further evidence of an Amerindian contribution to the Polynesian gene pool on Easter Island Tissue Antigens, 73 (6), 582-585 DOI: ... Read more »

Thorsby, E. (2012) The Polynesian gene pool: an early contribution by Amerindians to Easter Island. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1590), 812-819. DOI: 10.1098/rstb.2011.0319  

Thorsby, E., Flåm, S., Woldseth, B., Dupuy, B., Sanchez-Mazas, A., & Fernandez-Vina, M. (2009) Further evidence of an Amerindian contribution to the Polynesian gene pool on Easter Island. Tissue Antigens, 73(6), 582-585. DOI: 10.1111/j.1399-0039.2009.01233.x  

  • October 30, 2011
  • 06:18 PM
  • 863 views

El curioso caso de la enzima que funciona una sola vez

by David Castro in BioUnalm



Las enzimas son la base del metabolismo celular, gracias a ellas las células pueden generar la energía necesaria para vivir, producir los bloques de construcción de sus membranas y organelos, duplicar su material genético cada vez que se dividen, sintetizar hormonas y otras moléculas señalizadoras, degradar las toxinas, y hacer muchas cosas más. En otras palabras, las enzimas son unas macromoléculas capaces de llevar a cabo una serie de reacciones químicas que de manera natural no se podrían realizar o necesitarían una gran cantidad de energía para hacerlo. Para serles sincero, hasta ahora yo creía que las enzimas llevaban a cabo muchas reacciones antes de degradarse, siendo su reusabilidad una de sus principales características. En un artículo publicado esta semana en Nature, un grupo de investigadores norteamericanos han descrito el mecanismo de acción de una de las enzimas que participan en la síntesis de la vitamina B1 (Tiamina Pirofosfato), descubriendo que ésta sólo realiza una única reacción para después quedar inutilizable. En otras palabras, se trata de una enzima suicida. La vitamina B1 es un cofactor esencial en todos los seres vivos. Para su síntesis se requiere de dos precursores: una pirimidina y un tiazol azufrado. El mecanismo de síntesis de la pirimidina está muy bien entendido; sin embargo, la gran interrogante que queda es de dónde proviene el azufre del tiazol. Cuando aislaron y estudiaron los intermediarios que participan en la síntesis del tiazol, los científicos observaron que una enzima era purificada conjuntamente con tres de ellos. Esta enzima es conocida como la THI4p (tiamina tiazol sintasa). Cuando la analizaron bajo el espectrómetro de masas se dieron con la sorpresa que su peso era de 34 Daltons (Da) menor a lo predicho a partir de la secuencia genética que la codifica. Sin embargo, cuando la enzima no era funcional debido a una mutación, ya no se observaba estos 34Da de déficit. Esto indicaba que esta modificación era clave en el funcionamiento de la enzima. Para analizar más profundamente el sitio activo, Chatterjee y sus colaboradores partieron la enzima en muchos pedacitos con la ayuda de una quimiotripsina —un tipo de proteasa que rompe los enlaces peptídicos de las proteínas. Cuando estudiaron la porción de la proteína que contenía al sitio activo vieron que habían dos cisteínas (CyS) juntas en las posiciones 204 y 205. Las cisteínas son aminoácidos que se caracterizan por tener el grupo “tiol” (R-SH), que junto con la metionina, son los dos únicos aminoácidos azufrados. Con estas dos pistas —las cisteínas adyacentes y el déficit de 34Da— los investigadores sospechaban que el azufre del tiazol provenía de una de estas dos cisteínas. Por si no se dieron cuenta, el azufre pesa 32Da y el hidrógeno 1Da, entonces el grupo SH2 que pasa al tiazol pesa 34Da, justo los que se pierden de la enzima. Esto lo confirmaron cuando al sitio activo le hicieron un tratamiento con a una acetamida (un compuesto que se une a los residuos -SH de la cisteína). Cuando la enzima estaba mutada, la acetamida (CM) se unía a las dos cisteínas, algo que no ocurría cuando la enzima era funcional. Fragmento correspondiente al sitio activo. CC corresponde a las cisteínas. WT es la versión normal o silvestre y R301Q es la versión mutada. Las cetamidas (CM) sólo pueden unirse a la versión mutada porque el azufre de la cisteína-205 no puede pasar al tiazol. Cuando el azufre de la Cys-205 se pierde, se forma una dehidroalanina, la cual reacciona con el azufre del Cys-204 formando un enlace cíclico que no puede reaccionar con la cetamida. Para saber cuál de los dos azufres era el que pasaba al tiazol, los investigadores mutaron y remplazaron las cisteínas por serinas. Los resultados mostraron que sólo el cambio de la Cys-205 por la serina provocaba una pérdida de la función enzimática. Esto indicaba que era la Cys-205 la que donaba su grupo SH2 al tiazol. Una vez que la cisteína-205 perdía su azufre, se convertía en una dehidroalanina formando un enlace cíclico con el grupo –SH de la cisteína-204, evitando su unión a la acetamida. Chatterjee et al. también descubrieron que la THI4p era dependiente de el Hierro (II) (Fe2+). Cuando las bacterias que portaban este gen los pusieron en un medio mínimo (M9), la síntesis de vitamina B1 se reducía considerablemente. La función se restauraba una vez que se agregaba el hierro (II) al medio. Los investigadores determinaron que el hierro (II) activa el grupo tiol y se da en condiciones anaeróbicas porque se oxida con gran facilidad formando FeO (óxido ferroso). Finalmente, Chatterjee y sus colegas observaron que la enzima THIp4 no se regeneraba y no se podía volver a usar una vez que perdía su azufre. Todas las enzimas que participan en la biosíntesis de la vitamina B1 se expresan en cantidades muy bajas; sin embargo, la THIp4 está sobreexpresada. Cuando analizaron las proporciones de THI4p y vitamina B1, estas eran iguales (1:1) —cada enzima producía un tiazol. Este caso, si bien es bastante inusual, no es el primero. En el año 1985 Demple et al. descubrieron a la primera enzima suicida. Se trataba de la proteína Ada, una metiltransferasa que repara las O6-metilguaninas y los metilfosfotriésteres del ADN cuando sufren algún tipo lesión. Como su nombre lo dice, repara el daño transfiriendo el grupo metil de una cisteína de su sitio activo. En este caso, la enzima inactiva que queda funciona como un inductor de su propio gen, generando más proteínas Ada que reparan más lesiones. Sin embargo, queda por investigar si la THIp4 inactiva también tiene un efecto inductor similar a la proteína Ada. Lo cierto es que hay casos en que las enzimas pueden funcionar tan sólo una vez, contradiciendo nuestra creencia de que todas las enzimas pueden reusarse muchas veces antes de degradarse. Referencia: Chatterjee, A., Abeydeera, N., Bale, S., Pai, P., Dorrestein, P., Russell, D., Ealick, S., & Begley, T. (2011). Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase Nature, 478 (7370), 542-546 DOI: ... Read more »

Chatterjee, A., Abeydeera, N., Bale, S., Pai, P., Dorrestein, P., Russell, D., Ealick, S., & Begley, T. (2011) Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature, 478(7370), 542-546. DOI: 10.1038/nature10503  

  • October 28, 2011
  • 12:56 AM
  • 861 views

Se revela agente causante del síndrome de la nariz blanca de los murciélagos

by David Castro in BioUnalm



Durante el invierno de los años 2006 y 2007, una extraña enfermedad conocida como el síndrome de la nariz blanca (WNS: white-nose syndrome) empezó a diezmar a las poblaciones de murciélagos que hibernaban en las cuevas de los alrededores de la ciudad de Albany (Nueva York, EEUU). La tasa de mortalidad de esta extraña afección alcanzaba el 90% y, por si fuera poco, ya empezaba a ser detectada en colonias que vivían en regiones ubicadas a 2,000Km de distancia de su sitio original, poniendo en alerta a los conservacionistas y ecólogos norteamericanos. En el año 2009, el Dr. David Blehert y sus colaboradores del Centro Nacional de Salud para la Vida Silvestre de los Estados Unidos, descubrieron la presencia de un hongo oportunista psicrófilo —capaz de vivir a bajas temperaturas— en los murciélagos afectados por el WNS. Este hongo pertenecía a la especie Geomyces destructans. Sin embargo, hay una controversia sobre si es G. destructans el responsable directo de la enfermedad o no. Esto se debe a que, en la mayoría de mamíferos, los hongos oportunistas como éste se presentan en aquellos animales que tienen el sistema inmunológico comprometido*. Por otro lado, las infecciones por G. destructans en poblaciones de murciélagos europeos no causa la reducción de sus poblaciones. * Por ejemplo, en los humanos con el sistema inmunológico comprometido como aquellos infectados por el VIH, o que están recibiendo algún tipo de supresor inmunológico para tratar una enfermedad autoinmune como el lupus o la esclerosis múltiple, suelen presentar infecciones fúngicas causadas por el hongo oportunista Candida albicans. Para poner fin a esta controversia, el Dr. David Blehert y su equipo llevaron a cabo un experimento controlado en el cual infectaron intencionalmente con G. destructans a un grupo de murciélagos sanos para así determinar si es este hongo el responsable directo del síndrome de la nariz blanca o no. Los resultados aparecen publicados hoy en Nature. Primero, Blehert et al. capturaron murciélagos enfermos y sanos de diferentes cuevas de Nueva York y Wisconsin, respectivamente. También adquirieron una cepa certificada de G. destructans (ATCC MYA-4855) y la cultivaron en el laboratorio por 60 días. Para el primer experimento, los investigadores usaron estos cultivos fúngicos para infectar, de manera intencional, a un grupo de murciélagos sanos. Los resultados obtenidos fueron los esperados. Las lesiones en los murciélagos sanos comenzaron a aparecer a los 83 días de haber sido infectados con las conidias de G. destructans. A los 102 días, todos los murciélagos presentaban el síndrome de la nariz blanca. De esta manera, se demostró que el hongo era el responsable de la enfermedad y que su presencia no se daba como consecuencia de algún otro factor externo ya que, al estudiar detenidamente a los murciélagos de este experimento, no se encontraron evidencias de algún otro tipo de patología. El segundo experimento consistía en determinar si el hongo podía ser contagiado. Para ello desarrollaron dos experimentos: en uno pusieron dentro del mismo recinto a un grupo de murciélagos sanos junto a otros infectados; mientras que en el otro, pusieron a los murciélagos sanos e infectados en dos jaulas separadas a 1.3cm de distancia, evitando un contacto directo entre ellos. A los 102 días de iniciado el experimento, el 90% de los murciélagos sanos que estuvieron en contacto con los infectados fueron contagiados y desarrollaron la enfermedad, algo que no se observó en los murciélagos sanos separados físicamente de los infectados. Estos resultados demostraron que el agente responsable de la enfermedad podía ser transmitido por contacto directo mas no a través del aire. Sin embargo, los investigadores se sorprendieron al ver que la tasa de mortalidad de los murciélagos que fueron infectados en el laboratorio fue sumamente baja (menor al 20%). En el mundo natural, la tasa de mortalidad alcanza el 90%, es más, todos murciélagos enfermos que fueron colectados de las cuevas de Nueva York murieron en el transcurso de los experimentos [Ver figura de la izquierda]. ¿Qué estaba pasando? Al analizar los datos de Centro Nacional de Salud para la Vida Silvestre [ver figura de la derecha] observaron que las lesiones aparecían durante el otoño, justo antes de que los murciélagos entraran en el periodo de hibernación. Por otro lado, la tasa de mortalidad no se incrementaba sino hasta fines del mes de Enero. Esto indicaría que la mortalidad recién empieza a manifestarse a los 120 días de la infección. En el laboratorio, los análisis duraron sólo hasta el momento en que se observó el desarrollo de la enfermedad en los murciélagos tratados, o sea 102 días. Es por esta razón que las tasas de mortalidad son tan diferentes entre la condición controlada y la silvestre —los experimentos culminaron antes de que la tasa de mortalidad empezara a ascender. Los investigadores creen que este hongo oportunista pudo provenir de algún animal exótico que fue introducido al territorio norteamericano, ya que el origen de la enfermedad se da en un único lugar. Por otro lado, los efectos patológicos causados por G. destructans en los murciélagos refleja un comportamiento similar al observado cuando una especie nativa es expuesto a un agente infeccioso de otra región. Las especies nativas, al no haber estado en contacto nunca con estos hongos en tiempos pasados, no presentan defensa alguna contra ellos. Es más, se cree que este hongo es endémico de Europa, porque en esta parte del mundo, los murciélagos son inmunes a G. destructans. Así que aún queda mucho por investigar. Referencia: Lorch, J., Meteyer, C., Behr, M., Boyles, J., Cryan, P., Hicks, A., Ballmann, A., Coleman, J., Redell, D., Reeder, D., & Blehert, D. (2011). Experimental infection of bats with Geomyces destructans causes white-nose syndrome Nature DOI: 10.1038/nature10590 BioUnalm
... Read more »

Lorch, J., Meteyer, C., Behr, M., Boyles, J., Cryan, P., Hicks, A., Ballmann, A., Coleman, J., Redell, D., Reeder, D.... (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. DOI: 10.1038/nature10590  

  • February 28, 2012
  • 03:01 AM
  • 861 views

Células madre capaces de producir ovocitos hallados en mujeres adultas

by David Castro in BioUnalm



Pueden ser aislados y multiplicados tanto in vitro como in vivo para producir nuevos óvulos y abriría una nueva línea de investigación para el tratamiento de la infertilidad femenina. La ciencia no deja de sorprendernos. Desde ahora los libros y la Wikipedia deben ser reescritos y si tu profesor de biología te dice que las mujeres nacen con un número determinado de ovocitos —óvulos inmaduros— tienes todo el derecho a decirle que está equivocado. Un artículo publicado el 26 de Febrero en Nature Medicine reporta el descubierto de un tipo de células madre capaces de producir nuevos ovocitos en el ovario de mujeres entre 22 y 33 años. Desde 1951, los científicos creían que el número de ovocitos en los mamíferos ya estaba fijado al momento de nacer. En los humanos, por ejemplo, se encuentran estancados en la primera fase de la meiosis hasta la pubertad. Luego, uno por uno maduran para ser liberados durante la madurez sexual de las mujeres, cada mes de sus vidas, hasta que finalmente “se agotan” en una etapa conocida como menopausia. Se estima que son unos 400 los ovocitos primarios originales que llegan a madurar durante la vida de una chica normal. Sin embargo, en el 2004, el Dr. Jonathan Tilly y sus colegas del Hospital General de Massachusetts rompieron este paradigma al descubrir que los ovarios de las ratonas adultas tenían un tipo de células germinales muy raras, capaces de producir ovocitos de una forma análoga a la formación de los espermatozoides en los machos [Artículo completo aquí]. Se trataba nada menos que de una célula madre ovárica. Como era de esperarse, la comunidad científica se mostró muy reacia y escéptica ante tal descubrimiento, rechazando y criticando el trabajo constantemente. Tilly y su equipo realizaron más experimentos, consiguiendo aislar y proliferar éstas células madre en el laboratorio. También lograron obtener óvulos maduros a partir de ellas, que fueron insertados dentro de los ovarios de ratonas sin ovocitos siendo completamente funcionales y produciendo crías sanas. Incluso, en el 2009, se identificaron estas células madre en ovarios atrofiados de ratonas ancianas, que al ser trasplantadas en los ovarios de ratonas jóvenes, desarrollaron la ovogénesis. Todos estos resultados terminaron por confirmar la observación hecha por Tilly hace ocho años. Pero, ¿cómo fueron capaces de aislar estas células madre ováricas? En el 2005, un grupo de investigadores chinos de la Universidad de Shanghai Jiao Tong desarrollaron una metodología bastante innovadora basada en el inmunomagnetismo. Esta técnica consistía en usar un anticuerpo que se une específicamente a una proteína llamada Ddx4, que es expresada en la superficie de las células madre ováricas de las ratonas. Además, este anticuerpo estaba unido a una pequeña esfera magnética por el otro extremo. Entonces, se ponía una solución del anticuerpo sobre un ovario tratado con enzimas digestivas, se dejaba que reaccionen por unos minutos; y luego, con la ayuda de un imán, se separaba sólo aquellas células que estaban ligadas al anticuerpo, o sea, las células madre. Para el presente estudio, Tilly y sus colaboradores usaron una técnica mucho más moderna y eficiente, ya que permitía separar las células madre ováricas viables de las muertas, algo que con el inmunomagnetismo no se podía. La técnica se llama clasificación de células activadas por fluorescencia (FACS, por sus siglas en inglés), muy similar a la anterior, pero que usa moléculas fluorescentes y un citómetro de flujo en vez de las esferas magnéticas y el imán, respectivamente. Una vez estandarizado el protocolo en ratones, los investigadores repitieron en proceso en humanos. Para esto tomaron los ovarios donados por seis mujeres entre 22 y 33 años, con un trastorno de identidad de género, que se sometieron a una cirugía de cambio de sexo. Primero demostraron que los ovarios de estas mujeres en plena madurez sexual expresaban la versión humana del gen Ddx4, lo que indicaría que también presentan células madre ováricas y, por lo tanto, la posibilidad de ser aisladas. Luego, insertaron el gen de la proteína fluorescente verde a cada célula madre ovárica con el fin de hacerle un seguimiento durante todo su desarrollo. En otras palabras, les pusieron un foquito verde a dichas células para encontrarlas fácilmente a través de los experimentos in vitro e in vivo. Los resultados fueron sorprendentes. Cuando las células madre ováricas de ratones fueron cultivadas in vitro, empezaron a desarrollar los ovocitos entre las 24 y 48 horas después de haberse iniciado el experimento. Y cuando fueron insertadas en los ovarios de ratonas tratadas con agentes químicos que afectan las gónadas, también lograron desarrollar óvulos viables. Además, al mezclar estos nuevos óvulos con espermatozoides de ratones, lograron ser fecundados y empezaron con el desarrollo embrionario normalmente. (Los embriones retienen la fluorescencia verde, tal como se puede apreciar en la siguiente imagen) El mismo procedimiento fue reproducido en humanos. Cuando las células madre ováricas fueron cultivadas in vitro tardaron 72 horas en formar los ovocitos. Mientras que para hacer los estudios in vivo, los investigadores usaron biopsias de ovarios de otras pacientes para crear un ambiente óptimo para dichas células. Luego, todo este paquete fue trasplantado (xenotrasplantado, para ser exactos) en una ratona con el sistema inmunológico suprimido (para que no rechace el injerto), observándose que entre una y dos semanas después del xenotrasplante, empezaron a formarse los folículos conteniendo los ovocitos fluorescentes. Obviamente, por cuestiones éticas y jurídicas, no se pudo hacer la fertilización in vitro de estos óvulos generados a partir de estas células madre ováricas humanas. Sin embargo, lo más resaltante del trabajo es que se abre una nueva línea de investigación para el tratamiento de problemas de fertilidad en mujeres. Cabe la posibilidad de rescatar células capaces de generar nuevos ovocitos tanto de ovarios atrofiados como viejos. Además, estas células son adaptables a una proliferación in vitro y una diferenciación in vitro e in vivo. Referencia: ... Read more »

  • November 11, 2010
  • 04:29 PM
  • 859 views

Obtención de metabolitos secundarios a partir de células madre vegetales

by David Castro in BioUnalm

Los productos naturales obtenidos de plantas han sido nuestra principal fuente de medicamentos, insecticidas, tintes, aromas y condimentos. Muchos de los compuestos que han salvado al mundo de enfermedades devastadoras como la malaria (quinina) o ciertos cánceres (vincristina, vinblastina, taxol), son derivados de las plantas. Pero, en los últimos años, las investigaciones en estos productos naturales han sido eclipsados por el desarrollo de técnicas como el tamizaje de alto rendimiento (high throughput screening), el cual se basa en probar – uno por uno – un catálogo de miles de moléculas contra diferentes agentes, ya sean microorganismos, virus, células cancerígenas u otros compuestos químicos. Sin embargo, hasta ahora no se ha podido igualar la eficiencia de los productos naturales de las plantas, ya que son sus complejas estructuras, difíciles de obtener mediante síntesis orgánica, las responsables de su actividad farmacológica. Pero, el principal problema es que, por ser metabolitos secundarios, su concentración en las plantas es muy baja y muchas veces se expresan sólo en condiciones especiales, lo cual reduce su rendimiento (cantidad de producto obtenido por planta) y se necesitan extraer más plantas para poder satisfacer la demanda del producto, esto trae consigo la reducción de su población y, posteriormente, su extinción. Muchos investigadores han desarrollado técnicas de cultivo in vitro de estas plantas, con medios especiales para promover la producción del metabolito secundario deseado, funcionando muy bien a pequeña escala, pero, cuando es llevado a un biorreactor de producción de gran escala, su rendimiento cae considerablemente y la viabilidad de los cultivos se pierde a medida que pasa el tiempo. Otra estrategia usada es identificar los genes responsables de la síntesis del metabolito secundario deseado, aislarlos e insertarlos en bacterias de fácil cultivo y crecimiento, mediante la ingeniería genética, para que sean las bacterias y no las plantas las encargadas de producir la molécula, o por lo menos un precursor a ella que luego es transformado en el compuesto deseado mediante síntesis orgánica. Sin embargo, la cantidad de enzimas involucradas en la síntesis del producto, así como los factores de transcripción que sólo se encuentran dentro de las células vegetales de donde fueron extraídos, hace que la bacteria sea incapaz de producir el metabolito secundario deseado. El Taxol®, es quizás la droga más usada en el tratamiento del cáncer. Este fármaco es derivado del paclitaxel, un metabolito secundario obtenido de la corteza del “tejo del pacífico” (Taxus brevifolia). Debido a la sobre-explotación de este árbol, grandes empresas farmacéuticas desarrollaron un método alternativo para producir paclitaxel usando biorreactores. La técnica consistía en cultivar células obtenidas de los embriones y pistilos de diferentes especies de Taxus. Estos medios de cultivo eran especiales porque permitían que estas células pasen a un estado de desdiferenciación (CDD) formando pequeños “callitos”. Luego, estas mezcla de células desdiferenciadas son puestas en biorreactores para producir el metabolito deseado. Sin embargo, este método de producción del paclitaxel tenía varias limitaciones incluyendo una baja tasa de crecimiento, agregación de las células (que dificultaban la producción a gran escala), bajos rendimientos y alta variabilidad en el producto obtenido. Un gran avance en este campo fue presentado por Lee et al. en la revista Nature Biotechnology. En vez de cultivar una mezcla de células desdiferenciadas, Lee usó células del cambium vascular, que forma parte del meristemo lateral de la planta (célula vegetal de constante crecimiento, capaces de diferenciarse en diferentes tejidos, o sea, similar a una célula madre) y las propagó en un medio de cultivo especial para inducir la formación de callos, tal como en el método anterior. ¿Cómo hizo Lee para extraer estas células? Primero extrajeron el cambium vascular con todas sus partes (indicados con flechas, en el mismo orden que la figura a): médula (amarillo), xilema (blanco), cambium (verde), floema (rojo), córtex (azul) y epidermis (turquesa). Luego, pelaron cuidadosamente y separaron la médula y el xilema de lo demás.  Luego, cultivaron el cambium, floema, córtex y epidermis en un medio especial para inducir la formación de los callitos. Después de unos días, se ve claramente la división entre las células desdiferenciadas (CDD) del floema, córtex y epidermis (Bottom) de las células indiferenciadas del cambium (Top). Separaron esos dos tipos celulares y se quedaron con las células meristemáticas del cambium (CMC). Las CMC fueron transferidas a un frasco con medio líquido y observaron que se desagregaron en pequeños grupos de células. Esto es una gran ventaja, porque si recordamos un poco, es la agregación de células la que provoca una caída en el rendimiento del producto en las CDD. Al medir el tamaño de los agregados celulares, en CMC el 95% medía menos de 0.5mm, mientras que en las CDD sólo el 5% eran de este tamaño. En cuanto al rendimiento de producción se encontraron grandes diferencias. Usando técnicas cuantitativas precisas (HPLC y LC-MS) determinaron que el rendimiento en frascos experimentales (125mL) fue tres veces superior usando las CMCs. Pero, como los lotes de producción son de varios litros, se debía estudiar el comportamiento de las células en mayores volúmenes, donde las fuerzas de cizalla o corte debido a la agitación, son bastante perjudiciales. En un pequeño biorreactor de 3 litros, las CMCs produjeron 100000% (cien mil porciento) más biomasa que las CDDs, y en cuanto al rendimiento de producción en estos tanques de 3 litros, las CMCs produjeron 8 veces más paclitaxel que las CDDs. Otra gran diferencia fue que las CMCs secretaban al medio de cultivo el 74% del paclitaxel que producían, mientras que las CDDs menos del 5%. Esto es una gran ventaja porque permite reducir los costos de purificación del producto que es lo más caro de todo el proceso. Aún así, falta mucho por investigar ya que se deben mejorar las células mediante la ingeniería genética y metabólica para aumentar sus rendimientos, de esta manera poder reducir los costos de producción, y por lo tanto, el precio del producto en e... Read more »

Lee, E., Jin, Y., Park, J., Yoo, Y., Hong, S., Amir, R., Yan, Z., Kwon, E., Elfick, A., Tomlinson, S.... (2010) Cultured cambial meristematic cells as a source of plant natural products. Nature Biotechnology, 28(11), 1213-1217. DOI: 10.1038/nbt.1693  

  • May 11, 2010
  • 09:13 AM
  • 851 views

Los ratones expresan los mismos gestos de dolor que los humanos

by David Castro in BioUnalm

Cuando los ratones son sometidos al dolor pueden expresar gestos muy similares a los que expresamos los humanos; sobre todo, similares a aquellos que no pueden expresar el dolor verbalmente como los bebés y los mudos. Nadie había descubierto esto antes porque todos los estudios sobre la expresión facial del dolor sólo se hizo en humanos, ya que se creía que dependían, más que nada, de un factor social. Sin embargo, al observar que los ratones hacen muecas similares a nosotros, científicos liderados por Jeffery Mogil diseñaron una escala para usarlo en las pruebas para nuevos medicamentos contra el dolor. El principal problema por el que los nuevos analgésicos fallan al ser sometidos a ensayos clínicos en pacientes humanos es que en la fase previa —estudio en animales de experimentación— no se usan buenos indicadores del dolor. Los animales no dicen “Au!, Ouch!”, los investigadores se basan más bien en respuestas como la huída o el miedo del animal, pero nunca se habían puesto observar detenidamente sus rostros. La escala de dolor basado en los gestos del ratón son similares a la misma escala en humanos, lo cual es de mucha ayuda para los ensayos clínicos de los nuevos analgésicos. Mogil sometió a los ratones a pruebas de dolor moderado (similar a un dolor de cabeza o un dedo golpeado) los cuales son fáciles de tratar con analgésicos comunes como la Aspirina o el Paracetamol. Luego fotografiaron los rostros de los ratones bajo diferentes ángulos usando cámaras de alta definición, antes y después de inducirlos al dolor (Figura). Se usaron cinco expresiones faciales para determinar si el ratón estaba bajo dolor: ojos entrecerrados, abultamiento de la nariz, protuberancia en la mejilla, posición de las orejas y movimiento de los bigotes. Se observaron características notables cuando los pobres ratones estaban sufriendo algún tipo de dolor. Las tres primeras expresiones se tomaron a partir de la escala humana del dolor; mientras que las últimas dos son propias del ratón, ya que los humanos no podemos mover naturalmente los oídos ni tenemos bigotes. La gran similaridad de los gestos faciales entre los humanos y los ratones sugiere que es el resultado de la evolución, la cual mantiene conservada esta característica emocional en todos los mamíferos. Esta hipótesis ya había sido descrita por Darwin en 1872 en su libro “The Expression of the Emotions in Man and Animals”. El dolor tiene una respuesta física y otra emocional que van de la mano. En los seres humanos, hay una región en el cerebro relacionada con el aspecto emocional del dolor. Cuando esta área es destruida por un golpe o mediante la inducción de impulsos eléctricos, los pacientes pueden sentir esa sensación del dolor, pero no lo pueden describir como tal, hay una desconexión entre la parte física y la parte emocional del dolor. En los ratones, cuando esa área es dañada, se bloquean automáticamente las expresiones faciales de dolor, pero no se pierden los otros tipos de respuesta a él. Por mucho tiempo se creyó que las expresiones faciales del dolor estaban determinadas por la conducta y la cultura de la persona o grupo de personas. Si embargo, en 1972, Paul Eckman realizó un estudio en una comunidad aislada de Papúa y Nueva Guinea y observó que las expresiones faciales del dolor era universales. Ahora, con este descubrimiento hecho por Mogil sabemos que las expresiones faciales del dolor no sólo son universales en los seres humanos, sino podría ser en todos los mamíferos. Referencia: Langford, D., Bailey, A., Chanda, M., Clarke, S., Drummond, T., Echols, S., Glick, S., Ingrao, J., Klassen-Ross, T., LaCroix-Fralish, M., Matsumiya, L., Sorge, R., Sotocinal, S., Tabaka, J., Wong, D., van den Maagdenberg, A., Ferrari, M., Craig, K., & Mogil, J. (2010). Coding of facial expressions of pain in the laboratory mouse Nature Methods DOI: 10.1038/nmeth.1455 BioUnalm

... Read more »

Langford, D., Bailey, A., Chanda, M., Clarke, S., Drummond, T., Echols, S., Glick, S., Ingrao, J., Klassen-Ross, T., LaCroix-Fralish, M.... (2010) Coding of facial expressions of pain in the laboratory mouse. Nature Methods. DOI: 10.1038/nmeth.1455  

  • October 10, 2010
  • 07:49 PM
  • 850 views

El maíz transgénico beneficia más a los que cultivan maíz no transgénico

by David Castro in BioUnalm

Para los que han leído mis artículos sobre transgénicos se habrán dado cuenta que yo no soy un partidario del ingreso de estos cultivos al Perú por las razones que he expresado anteriormente. Pero, estar en contra al ingreso de transgénicos no es lo mismo que estar en contra de la biotecnología moderna, tal como algunos de nuestros brillantes científicos lo pretenden pintar. Con una buena regulación, donde los desarrolladores de cultivos transgénicos asuman sus responsabilidades por algún efecto negativo sobre la biodiversidad, y orientar el desarrollo de cultivares genéticamente modificados para que estos puedan crecer con bajas cantidades de agua o soportar climas fríos para que así se puedan aprovechar terrenos no usados en la agricultura sería muy beneficioso para nuestro país. No necesitamos depender de semillas vendidas por empresas extranjeras, nosotros tenemos la tecnología para desarrollar nuestros propios transgénicos, tal como lo viene haciendo el Centro Internacional de la Papa (CIP), sólo con un poco más de inversión por parte del estado y mayor seriedad en la elaboración de la normativa regulatoria, dejando de lado los intereses personales, el Perú podría aprovechar de manera óptima sus recursos genéticos. Además, creo que los medios de  comunicación no son objetivos cuando hablan sobre el tema. Según su posición y sus intereses personales o bien muestran a los transgénicos como los causantes de alergias, tumores, suicidios masivos y a los que apoyan los transgénicos  los pintan de lobbystas y vendepatrias; o bien muestran a los transgénicos como los que salvarán al mundo del hambre, volverá ricos a los agricultores y a los opositores de los transgénicos los pintan de ignorantes o activistas. Es triste ver como reconocidos científicos llegan hasta los insultos por defender imponer sus ideas, tal como en una lucha entre ateos y cristianos o creacionistas y evolucionistas. En fin, dejando de lado esta pequeña opinión, les comentaré un interesante artículo publicado por Hutchison et al. el día viernes en Science, donde analiza datos de áreas de cultivo de maíz transgénico (especialmente el Maiz Bt), reducción de población de plagas (Ostrinia nubilalis, una plaga del maíz), y beneficios económicos de los agricultores del centro de los Estados Unidos antes y después de la introducción de cultivos de maíz Bt en el año 1996. Primero algunos números para que vean la importancia de los cultivos transgénicos en la agricultura. Sólo el año pasado se han plantado 134 millones de hectáreas de cultivos transgénicos en 25 países del mundo. En USA el más abundante es el maíz transgénico, especialmente el Bt, el cual tiene insertado un gen de una bacteria (Bacillus thuringiensis) que codifica para una toxina que se expresa en las hojas de la planta y mata a las orugas de muchas lepidópteras, incluido el piral del maíz (Ostrinia nubilalis), una polilla europea que fue introducida por casualidad en USA en 1917. Las pérdidas por esta plaga – antes del maíz Bt – ascendían a $1000 millones/año. Si bien la toxina Bt puede matar a los insectos que atacan el cultivo, no sería nada raro que aparezcan insectos que sean resistentes a esta toxina. El maíz Bt ejerce una fuerte presión evolutiva sobre estos insectos, tal como los antibióticos lo hacen sobre las bacterias patógenas. Así que si aparece un insecto inmune a la toxina Bt, con un buen fitness (aptitud para dar descendencia fértil), los días de este maíz transgénico podrían estar contados y sería una grave amenaza para la agricultura mundial, ya que 25 países cultivan este maíz. Sin embargo, en los 14 años que lleva introducido el maíz Bt en el territorio norteamericano, los daños causados por el piral del maíz se ha reducido con respecto a los años donde no había maíz Bt (antes de 1996). La clave de este éxito del maíz Bt no ha sido sólo su resistencia a las plagas, sino la presencia de cultivares de maíz no transgénicos aledaños. ¿Cómo? Ahora les explico… Las polillas hembra no tiene preferencia al momento de poner sus huevecillos, lo hacen indistintamente en el maíz Bt o en el maíz NO-Bt. Entonces, si hay más cultivos de maíz Bt, más larvas de polillas morirán y la población de estas plagas se irá reduciendo con el tiempo.   Y por qué no cultivar puro maíz Bt para que eliminar por completo estas plagas? La idea de tener chacras de maíz NO-Bt aledaños a las chacras de maíz Bt es para que actúen como un refugio para los lepidópteros, de esta manera, la presión evolutiva que ejerce la toxina Bt se verá contrarrestada por un refugio natural de plagas sensibles al Bt.   Sí sólo hubiera maíz Bt, las plagas empezarían a morir y desaparecer, pero se correría el riesgo que una población adquiera resistencia a la toxina y se empiece a multiplicar y a diezmar con los cultivos de maíz transgénico. Pero, si tenemos un reservorio de plagas sensibles al Bt, la presión evolutiva que ejercería la toxina se vería reducida, porque las poblaciones de plagas se distribuirán indistintamente entre los cultivos de maíz Bt y NO-Bt. Menos población de plagas en las plantas transgénicas, menos probabilidades de que surja un mutante resistente y una fuente de retroalimentación de plagas sensibles al Bt. Es por esta razón que la Agencia de Protección Ambiental de los Estados Unidos (EPA) exige a los agricultores que usan maíz Bt, sembrar también refugios de maíz NO-Bt a no más de 800m de distancia, para promover la supervivencia de insectos susceptibles a la toxina. Aún así, los insectos pueden mutar y adquirir la resistencia al maíz Bt. Pero, las mutaciones son principalmente recesivas, así que estos híbridos seguirán siendo sensibles aunque en menor medida. Para evitar que lleguen a pasar su resistencia a sus descendientes, deben consumir una cantidad mayor de toxina Bt para que mueran, de no ser así se correría el riesgo de que aparezcan poblaciones resistentes. Para evitar esto, otra estrategia más que ha adoptado EPA es que los desarrolladores de semillas usen más de una toxina Bt que actúe sobre la misma plaga. De esta manera, si el insecto adquiere resistencia para una toxina Bt habrá otra que la matará. (…) Retomando el tema principal de este artículo (…) Hutchison et al. descubrieron que los mayores beneficios económicos entre 1996 y el 2009 estaban asociados a los agricultores que no sembraban maíz Bt ¿Como? . O sea, ¿beneficia más al que no usa la tecnología que al que la usa? Sí, y esto se debe al “efecto halo”. ¿En que consiste?… Como ya explicamos anteriormente, las lepidópteras hembra ponen sus huevos indistintamente en el maíz Bt y NO-Bt, si hay mayor proporción de maíz Bt, más poblaciones de insectos serán eliminados así que habrá menos insectos que infecten a los maíces no transgénicos. Ver figura: Así que, indirectamente, los que cultivan maíz NO-Bt se están librando de las plagas gracias al maíz Bt de los agricultores vecinos. En ciertos estados de USA como Minnesota, Illinois y Wisconsin, más del 50% del maíz es Bt, así que el efecto será mayor. Por ejemplo, en Minnesota, antes del ingreso del maíz Bt, el número de larvas era de 59 por cada 100 plantas. Cuando los campos de maíz Bt alcanzó el 40% del total del maíz cultivado, el número de larvas por cada 100 plantas se redujo en más del 70% (16 larvas por cada 100 plantas). Resultados similares se obtuvo en Illinois y Wisconsin. Aunque, si bien muchos factore... Read more »

Hutchison, W., Burkness, E., Mitchell, P., Moon, R., Leslie, T., Fleischer, S., Abrahamson, M., Hamilton, K., Steffey, K., Gray, M.... (2010) Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers. Science, 330(6001), 222-225. DOI: 10.1126/science.1190242  

Tabashnik, B. (2010) Communal Benefits of Transgenic Corn. Science, 330(6001), 189-190. DOI: 10.1126/science.1196864  

  • November 16, 2010
  • 05:50 PM
  • 850 views

Se identifican los genes responsables de la tolerancia al arsénico en las plantas

by David Castro in BioUnalm

Cuando uno escucha hablar del arsénico, automáticamente se nos viene a la mente relacionarlo con un veneno, y es verdad, el arsénico es un elemento químico altamente tóxico, no sólo para el hombre, sino también para la mayoría de los seres vivos. La Organización Mundial de la Salud (OMS) ha establecido que concentraciones superiores a 10ug/L pueden provocar efectos perjudiciales sobre la salud. A pesar de esto, el arsénico es ampliamente usado en la industria humana, por ejemplo, enfermedades como la sífilis y la tripanosomiasis son tratadas con arsénico, mientras que herbicidas y pesticidas como el DSMA, poseen altas concentraciones de este metaloide en su formulación. El uso excesivo de estos herbicidas y pesticidas en la agricultura, así como los desechos de las minas, han aumentado las concentraciones de arsénico en aguas que son usadas tanto para el consumo humano como para el riego de los campos de cultivo, llegando a concentraciones por encima de los límites establecidos por la OMS. Muchas plantas tienen la capacidad de tolerar altas concentraciones de arsénico sin sufrir daño alguno, esto gracias a un mecanismo de desintoxicación que acumula el metal pesado dentro de sus vacuolas. Sin embargo, esta habilidad tiene sus pros y sus contras… Por un lado, se podrían usar estas plantas para recuperar los suelos y aguas contaminadas con metales pesados mediante la fitorremediación, pero por el otro, estas plantas podrían acumular altas concentraciones de metales pesados en sus órganos comestibles, perjudicando directamente la salud humana. En Bangladesh, los acuíferos usados para el riego de los cultivos de arroz están muy contaminados con arsénico, alcanzando concentraciones superiores a los 50ug/L. Las plantas de arroz pueden tolerar estas altas concentraciones, pero el arsénico acumulado en sus vacuolas pasa a los granos de arroz que es el principal sustento alimenticio de la población. Así que para reducir la ingesta de arsénico a través de las plantas en poblaciones que viven en zonas altamente contaminadas, es necesario identificar los mecanismos implicados en la acumulación y desintoxicación de arsénico en las plantas. Científicos de liderados por  Won-Yong Song de la Universidad de Zurich han revelado los genes involucrados en la tolerancia a arsénico en la planta modelo, Arabidopsis thaliana. La clave del asunto se basa en la identificación de los transportadores específicos de arsénico, que desintoxican la planta a través del paso del metaloide desde citoplasma a las vacuolas, lugar donde son acumulados. Los principales candidatos eran los transportadores ABCC, que son una subfamilia de los transportadores ABC. Estos transportadores ABCC están involucrados con la resistencia múltiples antibióticos (bacterias multidrogo-resistentes), así como en la resistencia a metales pesados en levaduras y humanos. Este tipo de transportador también está presente en Arabidopsis. De los 15 genes ABCC encontrados en Arabidopsis, dos estaban involucrados con la tolerancia al arsénico (atabcc1 y atabcc2). Cuando uno de los dos genes estaba ausente, la tolerancia se reducía ligeramente, pero cuando los dos genes estaban ausentes (doble knockout), la plana era sensible al arsénico y no crecía (Figura A: DSMA 100mg/L, B: As 50uM, E: ). Figura A: DSMA 100mg/L, B: As 50uM, (A y B in vitro) E: As 133.5uM (en suelo). WT: tipo silvestre; abcc1 (sin transportador AtABCC1); abcc2 (sin transportador AtABCC2) y abcc1/abcc2 (sin ninguno de los dos transportadores) Luego, para comprobar si en realidad eran estos dos genes los involucrados con la tolerancia a arsénico en las plantas, insertaron estos dos genes en una cepa de levadura que carecía de transportadores ABCC. Cuando fueron sometidos a diversas concentraciones de arsénico, observaron que aquellos que tenían insertados los genes atabcc1 y atabcc2 aumentaron considerablemente su tolerancia al metaloide, pero no de una manera eficiente. Entonces, la planta debería producir alguna sustancia más que favorezca el transporte del arsénico a las vacuolas. Los investigadores sabían que para que el arsénico – o cualquier otro metal pesado – pueda ser transportado en un organismo vivo, debe estar asociado o acomplejado con otra molécula llamada agente quelante. El quelante más conocido y usado es el glutatión, que no es más que un pequeño tripéptido (formado sólo por tres aminoácidos). Sin embargo, las plantas poseen otro agente quelante llamado las fitoquelatinas, que no es más que de dos a once moléculas de glutatión enlazadas. Así que a diferencia de las levaduras que usan principalmente el glutatión (GT) para quelar el arsénico, las plantas usan sus fitoquelatinas. Entonces, para corroborar esta hipótesis, diseñaron levaduras capaces de producir las fitoquelatinas (FQ). Al repetir la prueba de tolerancia al arsénico, observaron que esta aumentó considerablemente con respecto a la levadura que no expresaba las fitoqulatinas, tanto así que toleraron concentraciones superiores a 100uM. De esto concluyeron que las proteínas AtABCC1 y AtABCC2 transportaban eficazmente el complejo FQ-As y no el complejo GT-As. Además, para completar esta parte del estudio, demostraron – con otro experimento – que el arsénico sólo no podía atravesar los transportadores ABCC, siendo necesaria la presencia de los agentes quelantes. Si bien este estudio fue hecho en Arabidopsis y no en arroz u otra planta de consumo humano, los resultados pueden ser fácilmente extrapolables a otras familias ya que Arabidopsis thalaiana es la planta modelo por excelencia. Ahora sólo quedaría identificar genes homólogos a la atabcc1 y atabcc2 en otras especies de plantas. Una de las principales aplicaciones sería mejorar la capacidad de captura de metales pesados a través de la sobre-expresión de los genes abcc1 y abcc2, ya que Song et al. también demostraron que dicha sobre-expresión aumentaba la tolerancia de Arabidopsis al arsénico de manera sustanciosa. Este estudio podría tener grandes implicancias en la fitorremediación, se podrían diseñar nuevas estrategias de purificación de las aguas de las minas antes de ser liberadas a los ríos así como bajar los niveles de metales pesados en aguas usadas para la agricultura. Por otro lado, se podría reprimir o silenciar estos genes en los órganos comestibles de las plantas, para que el arsénico capturado en las raíces, hojas y los tallos no llegue a ser ingerido por las personas o animales. Referencia: Song, W., ... Read more »

Song, W., Park, J., Mendoza-Cozatl, D., Suter-Grotemeyer, M., Shim, D., Hortensteiner, S., Geisler, M., Weder, B., Rea, P., Rentsch, D.... (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1013964107  

  • February 16, 2011
  • 05:59 AM
  • 849 views

¿Los receptores olfativos reconocen la forma de las moléculas o las vibraciones moleculares?

by David Castro in BioUnalm

Si les pregunto… ¿Cuál de todos tus sentidos es el más importante? Les aseguro que casi el 100% me dirá la vista. Para muchos quedar ciegos es lo peor que nos podría pasar en la vida, y tal vez sea cierto, porque casi todo lo que hacemos depende de ella. Para otros animales, el oído será el sentido más importante, sobre todo para aquellos que viven en las profundidades del mar o para los que se valen del sonar para poder cazar o de la ecolocalización para poder orientarse. Para otros animales, el más importante será el olfato, ya que gracias a él pueden detectar las moléculas que hay en el entorno (feromonas) y poder encontrar una pareja con quien aparearse. En los humanos, hemos despreciado mucho al sentido del olfato. Sin embargo, para muchos biólogos evolutivos, este sentido es uno de los más importantes, tal vez tan importante como lo es el sentido de la vista. En primer lugar, un olor puede evocar muchos más recuerdos que una imagen o un sonido. Y en segundo lugar, un gran porcentaje de los sabores que sentimos se dan gracias al sentido del olfato y no del gusto. Esto lo podemos demostrar fácilmente al taparnos la nariz y tomar un sorbo de café y uno de té. No podremos distinguir la diferencia entre ellos. Otro ejemplo es cuando tomamos un jarabe muy feo, al taparnos la nariz pasará desapercibido. Cuando estamos resfriados y con la nariz tapada, las comidas nos sabrán insípidas. El cebiche no será el mismo si nos tapamos la nariz. A pesar de ser un sentido muy importante, sabemos poco acerca de su funcionamiento. De manera sencilla, la principal teoría que explica cómo olemos dice que cada molécula o parte de ella (odotipos) es reconocida en base a su forma (disposición de sus átomos) por un receptor en particular, formando u mecanismo tipo ‘llave-cerradura’. Sin embargo, la principal falla de esta teoría es que podemos captar decenas de miles de olores diferentes sólo con unos cientos de receptores, ¿cómo puede ser posible esto bajo un mecanismo de llave-cerradura? Otra falla en la teoría es que moléculas con estructuras muy similares tienen olores completamente diferentes. Una teoría alternativa para explicar como los receptores olfativos reconocen un olores se basa en las vibraciones de los átomos o de los grupos funcionales que conforman una molécula. Reemplazando los átomos de hidrógeno por deuterio, sería una buena forma de probar esta teoría. El deuterio es un isótopo del hidrógeno el cual tiene un neutrón y un protón en el núcleo, volviéndolo el doble de pesado que el hidrógeno y afectando la vibración molecular. A pesar de la sutil diferencia entre el hidrógeno y el deuterio, las propiedades químicas de ambos isótopos son las mismas. Esto quiere decir que la molécula que posea deuterio en vez de hidrógeno tendrá las mismas propiedades químicas que la molécula original. Entonces, si la molécula deuterada y no deuterada posee las mismas propiedades químicas y estructurales, no debería haber diferencia entre ellas al momento de olerlas si la teoría de llave-cerradura es la correcta. Sin embargo, científicos griegos liderados por la Dra. María Isabel Franco, demostraron que la mosca de la fruta (Drosophila melanogaster) tiene la capacidad de distinguir el olor de una misma molécula deuterada y no deuterada, según reportaron el día lunes en PNAS. Para probar la hipótesis de las vibraciones moleculares, los investigadores usaron un compuesto comercial llamado aceptofenona (ACP). La ACP también fue comprada en sus versiones deuteradas, las cuales tenían 3, 5 y 8 átomos de deuterio reemplazando a los hidrógenos. Las cuatro versiones del ACP fueron diluidos y puestos en dos extremos de un pequeño laberinto en forma de ‘T’. Las moscas se sintieron atraídas por el compuesto así que compararon la respuesta hacia el ACP normal con los deuterados. Los resultados mostraron que las moscas tenían la capacidad de distinguir entre las dos versiones de la ACP, y cuanto más deuterada se encontraba, más se alejaban de ella. Además, se obtuvo el mismo resultado cuando se usó 1-octanol normal y deuterado, y también cuando usaron benzaldehido normal y deuterado. Las moscas distinguían estos dos tipos de moléculas y en casi todos los casos no les gustaba la versión deuterada de la molécula. Para corroborar estos resultados, los investigadores entrenaron a las moscas para que evitaran escoger una de las dos moléculas a través de una descarga eléctrica. Por ejemplo, cada vez que la mosca elegía la ACP normal recibía una descarga eléctrica. Así que cuando pusieron en el laberinto la versión deuterada con la normal, las moscas elegían la versión deuterada, a pesar que en el primer experimento no lo hacían. Esto demostraba que las moscas eran capaces de distinguir entre los dos olores. Si bien en humanos no se ha demostrado la capacidad de distinguir el olor de moléculas deuteradas y no deuteradas, este artículo ofrece una buena evidencia que indicaría que la teoría de las vibraciones moleculares es la correcta. Aunque ha científicos que se mantienen escépticos ya que creen que las moscas tienen la capacidad de distinguir entre una molécula deuterada y otra no deuterada, sin la necesidad de que las vibraciones moleculares jueguen un papel crucial en este echo. Para responder a esta crítica, los científicos diseñaron otro experimento en el cual se reemplazó los enlaces carbono-deuterio  (C-D) por grupos nitrilo (C≡N), los cuales poseen una vibración similar. Cuando a las moscas entrenaron para que la mosca relacionara la descarga eléctrica con la versión normal de la molécula y luego las sometieron al laberinto confrontando las versiones deuteradas y nitriladas, las moscas no pudieron encontrar diferencia significativas entre ellas, dando un punto a favor a la teoría de las vibraciones moleculares. Bueno, el estudio se ve bastante prometedor, pero no significa que nuestro sentido del olfato funcione de esta manera, aunque si ayudaría a resolver ciertas interrogantes. Se debe hacer experimentos similares en humanos, pero dichos experimentos deben ser bien diseñados ya que nosotros no podemos distinguir entre una forma normal y una deuterada, ya que nuestros receptores olfatorios no son tan sensibles. Aunque los perros, quienes también tienen buenos receptores olfatorios, tampoco pueden discriminar entre una y otra molécula, lo cual indicaría que hay algo más que aún nos falta entender. Referencia: Franco, M., Turin, L., Mershin, A., & Skoulakis, E. (2011). Molecular vibration-sensing component in Drosophila melanogaster olfaction Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1012293108 BioUnalm
... Read more »

Franco, M., Turin, L., Mershin, A., & Skoulakis, E. (2011) Molecular vibration-sensing component in Drosophila melanogaster olfaction. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1012293108  

  • May 28, 2010
  • 01:21 AM
  • 847 views

Un receptor apoptótico que promueve el cáncer

by David Castro in BioUnalm

¿Qué es el cáncer? En términos sencillos, es una división incontrolada de células por fallas a nivel genético y/o metabólico produciendo tumores y diseminación a otros tejidos del cuerpo (metástasis). Y la apoptosis es todo lo contrario, es la muerte celular programada (cuando están viejas o ya cumplieron su vida útil o función). Así que sería lógico pensar que una forma de controlar el desarrollo del cáncer es inducir la apoptosis en las células cancerígenas. Entonces, ¿por qué no diseñar fármacos o compuestos que promuevan la apoptosis y solucionamos de una vez por todas el problema del cáncer? No es tan fácil como parece… Por más de 20 años se ha considerado a la CD95 —un receptor de membrana— como una asesina. Cuando CD95 interacciona con su ligando, CD95L, o con un anticuerpo activador, induce rápidamente la apoptosis en muchos tipos de células diferentes, y cuando su ligando o activadores son insertados en los mamíferos provocan la destrucción y muerte del hígado. Sin embargo, deleciones y mutaciones en el gen que codifica para CD95, causan graves enfermedades inmunes debido a la pérdida de la apoptosis. Las células viejas o malformadas que deberían morir no lo hacen y se convierten en antígenos que activan nuestro propio sistema inmune como si fuera algún patógeno. Además, si bloqueamos por otros mecanismos la apoptosis, la CD95 induce la necrosis celular mediante otras vías de señalización. Y, ¿que pensarían si les digo que la CD95 promueve el cáncer? De hecho pensarían que estoy loco porque es ridículo pensar que un receptor de membrana que promueve la muerte celular favorezca un comportamiento que se caracteriza por el exceso de división celular. Sin embargo, Chen et al. presenta evidencias de que esto, paradójicamente, podría ser posible. Los investigadores usaron varias líneas celulares de diferentes tejidos, todas ellas con tumores, tanto de humanos como de ratones, para determinar si la mutación o eliminación de la CD95 comprometía el crecimiento de los tumores sin causar la muerte celular. Al analizar sus resultados vieron que el ligando CD95L es necesario para la promoción del crecimiento en los tumores, siendo el complejo CD95-CD95L de suma importancia para la generación y mantenimiento del cáncer. Es así que se dan indicios que CD95 no podría tener función apoptótica alguna. Pero, ¿como hace CD95 para promover el crecimiento de los tumores? La CD95L puede estar en dos formas: unido a CD95 en la membrana celular o libre en su forma soluble. La primera forma es importante para inducir la apoptosis, mientras que la segunda podría generar anormalidades en el sistema inmune. Se observó que los ratones podían desarrollar sarcomas hepáticos y ciertas formas de cáncer raramente vistos en animales son CD95 o CD95L. En personas con cáncer, se han encontrado altas concentraciones de CD95L en su sangre. Todos estos resultados dan pistas y sugieren que CD95 estaría envuelto de el desarrollo de los tumores, por ende, el cáncer. La inflamación es un factor importante que promueve el cáncer. Una idea es que CD95 induce la inflamación. Por ejemplo, expresión de CD95 en regiones anormales o poco comunes —como en las células del páncreas o en tejidos recién trasplantados—, pueden inducir una dramática infiltración de glóbulos blancos en el tejido comprometido(inflamación); sin embargo Chen et al. reportaron que CD95L promueve el crecimiento del tumor mediante mecanismos dentro del tumor y no encontró diferencia en los patrones de inflamación de los tumores que expresan CD95 y los que no lo expresan. Tampoco encontraron pruebas que indiquen que CD95L promueva la inflamación. Lo que si están seguros es que CD95 activa ciertas vías metabólicas dentro de las células tumorales. Pero, ¿cuáles son estas vías?. Chen et al. proponen la activación de NF-κB (probablemente a través de la enzima RIPK1) es la responsable de promover el crecimiento de los tumores. Sin embargo, esto parece ser poco probable, porque vieron que la CDS95, a pesar de tener una relación directa con la inducción del carcinoma hepatocelular, no poseen la ruta NF-κB. Así que Chen et al. han propuesto otro mecanismo que involucra a la enzima JNK incrementando la transcripción de los factores de transcripción EGR-1 y Fos. Cuando se inhibió la expresión de JNK observaron que había un retardo en la expresión de CD95. Sin embargo, esta ruta aún no está bien descrita y entendida. No se sabe como CD95 puede activar la JNK o si lo hace el ligando CD95L, o si en ausencia de CD95, la enzima JNK puede activarse mediante otros mecanismos. Se cree también que la vía de la caspasa-8 pueda estar involucrada. A pesar de todas estas dudas, podemos ver que nuestro sistema y metabolismo es sumamente complejo, una misma biomolécula que puede estar envuelta en la muerte celular, también podría estar involucrada en el desarrollo de los tumores. Podemos diseñar compuestos que bloqueen la interacción CD95-CD95L en las membranas celulares de células cancerígenas, pero al bloquearse esta vía, podría surgir otra completamente desconocida que contrarreste este efecto. Referencia: Chen, L., Park, S., Tumanov, A., Hau, A., Sawada, K., Feig, C., Turner, J., Fu, Y., Romero, I., Lengyel, E., & Peter, M. (2010). CD95 promotes tumour growth Nature, 465 (7297), 492-496 DOI: 10.1038/nature09075 BioUnalm

... Read more »

Chen, L., Park, S., Tumanov, A., Hau, A., Sawada, K., Feig, C., Turner, J., Fu, Y., Romero, I., Lengyel, E.... (2010) CD95 promotes tumour growth. Nature, 465(7297), 492-496. DOI: 10.1038/nature09075  

  • January 20, 2011
  • 09:57 AM
  • 841 views

Una ameba es el agricultor más primitivo

by David Castro in BioUnalm

¿Quién no conoce a las amebas?… esos diminutos organismos unicelulares, amorfos y de vida libre, que viven alimentándose de las bacterias que van encontrando en su camino. Las amebas, evolutivamente hablando, están ubicados entre los hongos y los animales, es por esta razón que poseen cierto grado de interacción social, formando agregados multicelulares cuando el alimento escasea. Este agregado celular —muy parecido a una babosa— tiene la capacidad de migrar y desarrollar cuerpos fructíferos (ver Figura), los cuales empiezan a desarrollar un tallo que en la punta posee una especie de esfera (soros) que es donde se almacenarán las esporas. Cuando madura, las esferas revientan liberando las pequeñas esporas que germinarán cuando las condiciones sean las adecuadas, iniciando nuevamente con su ciclo de vida.

Pero, ¿cómo estos simples organismos pueden llegar a ser agricultores? Hasta ahora se conocen solo unas cuantas especies que han desarrollado la agricultura como por ejemplo las hormigas cultivadoras de hongos, quienes se encargan de dispersar y sembrar las semillas —que vienen a ser las esporas de los hongos— y luego las cultivan alimentándolas con las hojas que recolectan del bosque, así tienen una constante fuente de alimento.
Debra Brock era una estudiante que se pasó toda su carrera universitaria en el Departamento de Ecología y Biología Evolutiva de la Universidad de Rice, observando y analizando a la ameba Dictyostelium discoideum, más conocida como el moho del fango (de cariño “Dicty”). Cuando analizó detenidamente los soros de 35 especímenes recolectados de varias regiones de Minnesota, observó que —a parte de las esporas de D. discoideum— algunos clones portaban bacterias.
Así que, para confirmar esta extraña observación, con la ayuda de una micropipeta se extrajo todo el contenido de los soros y los sembró en un medio de cultivo para bacterias (Agar nutritivo). Después de un par de días, empezaron a formarse colonias bacterianas. Además, Brock observó que las bacterias podían crecer en otros lugares, cuando los agregados de Dicty migraban hacia zonas libres de bacterias, antes de formar los cuerpos fructíferos, lo que indicaría que las bacterias eran llevadas “en sus bolsillos”, lo que hacía suponer que se estaban comportando como agricultores, llevando sus semillas hacia otras zonas donde no hay alimento, regenerando las colonias bacterianas de las cuales se alimentarán.

Pero, sólo el 36% de sus clones recolectados tenían esta capacidad. Así que Brock analizó sus secuencias de ADN mitocondrial y ribosomal para determinar si sus clones eran de la misma especie o no, los resultados arrojaron que no habían diferencias entre ellas, correspondiendo a la misma especie. Por otro lado, al analizar el ADN ribosomal de las bacterias presentes en los soros vieron que ellas si pertenecían a diferentes especies, y muchas de ellas formaban parte de la dieta principal de Dicty.
Para determinar la capacidad de Dicty para cargar bacterias como semillas, las sometieron a un tratamiento con antibióticos, para así eliminar cualquier bacteria que pudieran estar cargando consigo. Luego, sembraron tanto a las Dicty agricultoras como no agricultoras en medios de cultivo con una bacteria llamada Kleibsella aerogenes y les extrajeron sus soros para sembrarlas en un medio de cultivo estéril. Al cabo de un par de días, empezaron a formarse colonias de K. aerogenes en las placas que tenían los soros de las Dicty agricultoras, confirmando la capacidad de portar bacterias a manera de semillas.
Luego, Brock analizó los beneficios que le puede conferir esta peculiar característica. Lo que hizo fue cultivar las Dicty bajo diferentes condiciones: en un medio de cultivo estéril, en un medio de cultivo con bacterias y en muestras de suelo previamente esterilizadas. Luego compararon el número de esporas formadas por las Dicty agricultoras con respecto a las no agricultoras, la cual está relacionada directamente con su crecimiento y desarrollo.
Cuando las Dicty eran puestas en un medio de cultivo libre de bacterias o en muestras de suelo estériles (a y c), las Dicty agricultoras se desarrollaron muy bien gracias a su capacidad de regenerar las colonias bacterianas que eran usadas como alimento Una vez que consumían todos sus recursos empezaban a formar los cuerpos fructíferos y esporas. Las Dicty no agricultoras no se desarrollaron por no tener una fuente de alimento. Sin embargo, cuando las Dicty eran puestas en medios de cultivo con bacterias (b), las que mejor se desarrollaban eran las no agricultoras.

Lo que pasaba era que las Dicty agricultoras estaban preparadas para almacenar bacterias antes que estas se agotaran. Sin embargo, cuando estaban en un medio lleno de bacterias, a pesar que la cantidad de alimento era suficiente, las Dicty agricultoras dejaban de consumirlas y las empezaban a almacenar, mientras que las Dicty no agricultoras seguían alimentándose, por esta razón, las no agricultoras desarrollaron un poco más de esporas que las agricultoras.
Entonces, ¿cuál es la ventaja de ser agricultoras si en la naturaleza, nigún suelo está libre de bacterias? Brock et al. dedujeron que la ventaja que tenían era que las Dicty agricultoras podrían llevar consigo las bacterias que fueran más beneficiosas o nutritivas para ellas. Es como lo que hicieron los humanos cuando iniciaron la agricultura hace unos 12,000 años. Primero seleccionaron las semillas de los mejores frutos, ya sean los más grandes o los más sabrosos, y cuando migraban se llevaban consigo las semillas de esos frutos, a pesar que en las zonas donde se asentarían poseía su propia diversidad de plantas y frutos. Lo mismo hacen las Dicty, llevan consigo las "semillas" de las bacterias que ellos prefieren, ya que a pesar de que D. discoideum es una sóla especie, se ha observado que sus preferencias alimenticias varían entre diferentes poblaciones.
Otra cosa interesante que se observó fue que las Dicty agricultoras no migraban tanto como las no agricultoras. Esto se debería a que como las agricultoras tienen las semillas para generar sus alimentos, no necesitan desplazarse mucho, ya que en cualquier región pueden regenerar colonias bacterianas, mientras que las no agricultoras deben migrar lo suficiente como para encontrar regiones ricas en bacterias.
Entonces, la coencción entre sociedad y agricultura no fue un hecho fortuito y al parecer es un proceso común en la naturaleza. Las Dicty pueden asegurar la alimentación de sus descendientes al cargar las semillas que les brindarán alimento en sus esporas. Además, al tener esta estrategia no se verán en la necesidad de tener que explorar otras regiones en busca de alimento. Aunque el mecanismo agrícola que manejan no es tan complejo como el de las hormigas o termitas, quienes no sólo siembran sus semillas, es este caso las esporas de los hongos, sino que también las cultivan porque alimentan a los hongos con material vegetal para que puedan crecer y desarrollarse, para luego cosecharlas y alimentarlas. En el caso de D. discoideum es como la parte inicial de la agricultura, como cuando el hombre se dio cuenta que las pepas de los frutos que consumían podían regenerar el fruto. Al inicio no las regaban, pero más tarde se dieron cuenta que si lo hacían, y además las abonaban, los frutos crecerían más rápido y serían más grandes.
Referencia:
... Read more »

Brock, D., Douglas, T., Queller, D., & Strassmann, J. (2011) Primitive agriculture in a social amoeba. Nature, 469(7330), 393-396. DOI: 10.1038/nature09668  

  • April 18, 2012
  • 10:15 PM
  • 841 views

Compensación de la dosis génica en plantas

by David Castro in BioUnalm





La expresión de los genes del cromosoma X de las plantas se equilibra en machos y hembras.






Una mujer es XX y un hombre es XY; mientras que un gallo es ZZ y una gallina ZW. Estas letras representan cada uno de los cromosomas sexuales de estos animales. En el caso de los mamíferos, aparecieron hace más de 150 millones de años.



Nuestro ADN esta dividido en cromosomas, 23 pares para ser exactos: una mitad viene del padre y la otra de la madre. A cada pareja se les conoce como cromosomas homólogos porque tienen los mismos genes distribuidos de la misma manera —sólo con algunas variaciones a nivel de sus secuencias— que les permiten emparejarse e intercambiar pequeñas porciones entre sí (recombinación genética). La única excepción a la regla se da en los cromosomas sexuales.

A lo largo de la evolución de los cromosomas sexuales de los mamíferos, el cromosoma Y dejó de recombinarse con el cromosoma X y se ha ido reduciendo gradualmente, perdiendo el 97% de todos sus genes. Esta degeneración del cromosoma Y ha provocado que uno de los dos cromosomas X de la mujer se inactive, para así asegurar que la dosis de expresión genética sea la misma en ambos sexos. [La mujer tendrá dos copias por cada gen, mientras que el varón sólo una].

En las moscas de la fruta también se da este fenómeno, el cual se inició hace unos 100 millones de años, pero contrariamente a los humanos, el cromosoma X de los machos se expresa más que el cromosoma X de las hembras, compensando así los niveles de expresión genética en machos y hembras.

La cuestión ahora es si este escenario —supresión de la recombinación, degeneración del cromosoma Y y compensación de dosis genética de X— es similar en todas las especies que tienen cromosomas sexuales, incluyendo a las plantas. Según un estudio publicado el 17 de Abril en PLoS Biology, la planta Silene latifolia también presenta esta compensación de dosis a pesar que sus cromosomas sexuales evolucionaron recién hace 10 millones de años.

La S. latifolia  es una planta dioica, esto quiere decir que las flores masculinas y femeninas se encuentran separadas en diferentes plantas, o sea, hay plantas macho y plantas hembras. Lo que hizo el Dr. Gabriel Marais y sus colaboradores de la Universidad de Lyon (Francia) y del Instituto de Biología Integrativa de Zúrich (Suiza) fue analizar las secuencias de ARN de diferentes muestras de ambos sexos de S. latifolia, encontrando más de 1,700 fragmentos de ARN relacionados con los cromosomas sexuales. Luego, analizaron los niveles de expresión de cada uno de estos fragmentos tanto en machos como en hembras.

Cuando estudiaron a las S. latifolia masculinas encontraron que los alelos relacionados con el cromosoma Y se expresaban en menor cantidad respecto a sus contrapartes en el cromosoma X. Sin embargo, cuando analizaron los niveles de expresión de los genes del cromosoma X en machos y hembras, ésta resultó ser la misma. Entonces, la S. latifolia presentaba tanto degeneración del cromosoma Y como compensación genética del cromosoma X, un fenómeno que antes se creía que sólo se daba en animales.

Una de las conclusiones más resaltantes del trabajo es que la compensación de la dosis génica aparece muy pronto en la evolución de los cromosomas sexuales. Hasta ahora no sabíamos cómo se daba este proceso porque los cromosomas sexuales de los animales estudiados aparecieron hace más de 100 millones de años.




Referencia:
Muyle, A., Zemp, N., Deschamps, C., Mousset, S., Widmer, A., & Marais, G. (2012). Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes PLoS Biology, 10 (4) DOI: 10.1371/journal.pbio.1001308

Imagen: http://frank.mtsu.edu/~cherlihy/research.html






Esta entrada participa en la XII Edición del Carnaval de Biología que organiza Raúl de la Puente (@doctorGENoma) en su "Blog de laboratorio".
BioUnalm



... Read more »

join us!

Do you write about peer-reviewed research in your blog? Use ResearchBlogging.org to make it easy for your readers — and others from around the world — to find your serious posts about academic research.

If you don't have a blog, you can still use our site to learn about fascinating developments in cutting-edge research from around the world.

Register Now

Research Blogging is powered by SMG Technology.

To learn more, visit seedmediagroup.com.