Post List

  • March 30, 2017
  • 04:04 AM
  • 10 views

Anecdotes are not evidence

by Craig Payne in Running Research Junkie

Anecdotes are not evidence... Read more »

  • March 30, 2017
  • 03:12 AM
  • 11 views

[Objective] exposure to flame retardants and social behaviours

by Paul Whiteley in Questioning Answers

Although a few details of the study reported by Shannon Lipscomb and colleagues [1] (open-access) interested me, I was particularly taken by their use of "a silicone passive wristband sampler [worn] around his/her wrist or ankle" to "assess the child’s exposure to flame retardants" as part of their investigation "to determine if flame retardant exposure was associated with measurable differences in social behaviors among children ages 3–5 years."I've covered the topic of potential adverse effects associated with exposure to flame retardants such as brominated diphenyl ethers (BDE) before on this blog (see here and see here for examples). Such compounds are listed as POPs (persistent organic pollutants) because of their ability to endure in the environment, accumulate in the body and potentially [adversely] affect various biological systems. In other words, these are compounds that might well have served an important purpose at one time - flame retardants - but are now realised to have quite a risk profile attached to them. Sounds familiar doesn't it?Anyhow, Lipscomb et al relied on other research [2] suggesting that various compounds/chemicals can be sequestered from silicone wristbands - those plastic things that many people wear for various causes - with the right equipment and under the right circumstances. To any analytical chemist, this is probably scientific music to their ears. They "extracted and analyzed for 41 different flame retardant compounds using gas chromatography mass spectrophotometry" and focused on 11 compounds "PBDE-47, PBDE-99, PBDE-153, PBDE-154, PBDE-49, PBDE28 + 33, tris(1,3-dichloro-2-propyl) phosphate], TPP [e.g. triphenylphosphate], TCPP [e.g tris(1-chloro-2-propyl) phosphate], and TCEP [e.g. tris(2-chloroethyl) phosphate" that were quite readily present in 60% or more of wristbands. For some of the compounds the authors generated a 'sum of' score; for example: "ƩPBDEs is the total amount of PBDE-47, PBDE-99, PBDE-153, PBDE-154, PBDE-49, and PBDE28." Social behaviours by the way, were scored by teachers in the preschool setting of participants using the Social Skills Improvement System - Rating Scales.Results: 92 children were initially recruited onto the study but only 77 children returned their wristbands intact (i.e. some of them 'went through the laundry'). Further: "a final sample size of 69 children with complete data... were included in the final analyses." Then: "Bivariate analysis revealed modest correlations between flame retardant exposure and some of the social behavior subscales." What this suggests is that there may be some evidence that such compounds (including organophosphate-based flame retardants (OPFRs)) might impact on aspects of social skills development but there are constraints based on the sample size used and the reliance on one primary measure of social skills for examples.As per the previous sentence, I'm not totally convinced by this data but am still really interested in the use of wristband samplers described by Lipscomb and colleagues. I can see how this kind of objective measure of exposure could really add another dimension to lots of different areas of research on environmental exposures in relation to various labels. Take for example the quite complicated area of research talking about maternal air pollution exposure and offspring autism risk (see here). Instead of just relying on postcode (zip code) in relation to mapping (estimating) pollution exposure, one could potentially adapt the chemical assay to screen for particulate matter for example, as collected on those wristbands. Certainly an easier way than lugging around a portable air monitor I would have thought. No doubt there are also other uses for such simple solutions...Music: Europe - The Final Countdown. 80s rock hairstyles at their best and perhaps an apt song given what happened here in Blighty yesterday...----------[1] Lipscomb ST. et al. Cross-sectional study of social behaviors in preschool children and exposure to flame retardants. Environmental Health 2017; 16: 23.[2] O'Connell SG. et al. Silicone Wristbands as Personal Passive Samplers. Environ. Sci. Technol. 2014; 48: 3327–3335.----------Lipscomb ST, McClelland MM, MacDonald M, Cardenas A, Anderson KA, & Kile ML (2017). Cross-sectional study of social behaviors in preschool children and exposure to flame retardants. Environmental health : a global access science source, 16 (1) PMID: 28274271... Read more »

Lipscomb ST, McClelland MM, MacDonald M, Cardenas A, Anderson KA, & Kile ML. (2017) Cross-sectional study of social behaviors in preschool children and exposure to flame retardants. Environmental health : a global access science source, 16(1), 23. PMID: 28274271  

  • March 29, 2017
  • 10:56 AM
  • 27 views

The retina receives signals from all over the brain, and that is kind of weird

by neuroecology in Neuroecology

As a neuroscientist, when I think of the retina I am trained to think of a precise set of neurons that functions like a machine, grinding out the visual basis of the world and sending it on to the brain. It … Continue reading →... Read more »

  • March 29, 2017
  • 04:30 AM
  • 28 views

Possible Keys For Running Away From Injury

by Nicole Cattano in Sports Medicine Research (SMR): In the Lab & In the Field

Cross country runners who developed a running-related injury during a season had greater knee valgus and ankle eversion velocity before the season started compared with runners who remained injury free. ... Read more »

  • March 29, 2017
  • 02:54 AM
  • 33 views

L-methylfolate administration and autism: a case report

by Paul Whiteley in Questioning Answers

I should have really titled this post 'another case report' given yesterday's entry on this blog talking about a case of [untreated] PKU and autistic behaviours/diagnosis. Here I am again talking about another N=1 with autism in mind and specifically the findings reported by Kim Siscoe & David Lohr [1] on how: "L-methylfolate supplementation improved symptoms of aggression and disruptive behavior in a child with autism who tested positive for the C677TT allele of the methyltetrahydrofolate reductase enzyme gene."First things first. This was a case report; please keep that in mind. Second, I am not a medical doctor and don't provide medical or clinical advice on this blog. Within those caveats I am however very interested in the Siscoe/Lohr observations.Why? Well, methylene tetrahydrofolate reductase (MTHFR) (gene and enzyme) has featured quite a bit on this blog in light of findings linking gene and enzyme to cases of autism (see here and see here for examples). The idea is that MTHFR serves a primary function in reducing the compound 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. 5-methyltetrahydrofolate - another name for L-methylfolate -  the reduced and methylated form of folic acid, is an important methyl group donor for the recycling of homocysteine back to methionine utilising vitamin B12 along the way (see here for a nice hand drawn graphic). The implications of disruptions to MTHFR (gene and enzyme) are potentially multiple but include effects on methyl group donor ability (methyl groups potentially linked to things like DNA methylation as part of all that epigenetics jazz that you hear so much about these days) and effects on downstream metabolites such as those related to homocysteine metabolism (see here).So Siscoe & Lohr present data on what happened when the active form of folate was supplemented following the identified genetic issue with the MTHFR gene potentially affecting typical production of L-methlyfolate.Where next with this work? Well, it stands to reason that in these days of personalised medicine percolating through to autism research and practice (see here), knowledge about a potential genetic issue identified in [some] cases of autism should be further investigated. We have other examples (see here). I'd like to see larger and more controlled trials of L-methlyfolate supplementation in relation to autism for example, based on screening for issues with the MTHFR gene. I'd like to see a few more biological measures incorporated in such study looking at other aspects of the folate and related cycles too (see here). I'd also like to see more discussion about any long-term implications and/or adverse effects associated with such supplementation along the lines of: should we really be tinkering with mechanisms linked to DNA methylation? Also in relation to some of the other diagnoses associated with issues with MTHFR there is similarly important work emerging [2] which could be quite important in certain instances...----------[1] Siscoe KS. & Lohr WD. L-Methylfolate supplementation in a child with autism and methyltetrahydrofolate reductase, enzyme gene C677TT allele. Psychiatr Genet. 2017 Mar 7.[2] Roffman JL. et al. Biochemical, physiological and clinical effects of l-methylfolate in schizophrenia: a randomized controlled trial. Mol Psychiatr. 2017. Mar 14.----------Siscoe, K., & Lohr, W. (2017). L-Methylfolate supplementation in a child with autism and methyltetrahydrofolate reductase, enzyme gene C677TT allele Psychiatric Genetics DOI: 10.1097/YPG.0000000000000170... Read more »

  • March 28, 2017
  • 04:48 PM
  • 41 views

Bottlenose Dolphins: The Ultimate Sea Bully? (A Guest Post)

by Miss Behavior in The Scorpion and the Frog

By Kayla FullerImagine this situation: you’ve brought your favorite lunch to work. Everyone is jealous of your food, continuously eyeing it up. A few coworkers, who have brought in disappointing lunches in comparison, approach and demand that you hand it over. After you refuse, they beat you until your body lies lifeless and they take your lunch anyway. Woah, woah, woah… that took a dramatic turn! Photo of a harbour porpoise, taken by AVampireTear (Wikimedia Commons)But for harbour porpoises in the northeastern Atlantic, this fight for food has become a reality, and bottlenose dolphins are the suspected culprit. In 1996, Harry M. Ross (SAC Veterinary Services, U.K.) and Ben Wilson (University of Aberdeen, U.K.) documented fractured rib cages, damaged internal organs and joint dislocations of deceased harbour porpoises in the northeastern Atlantic. Why would bottlenose dolphins be causing such damage? Who could ever associate such a cute and cuddly creature with a horrific crime like this? Photo of a bottlenose dolphin, taken by NASA (Wikimedia Commons)Researchers Jérôme Spitz, Yann Rousseau, and Vincent Ridoux with the Center for Research on Marine Mammals: Institute for Coastal and Environmental Research at the University of La Rochelle in France become the judge and jury in this trial. Jérôme, Yann, and Vincent obtained 29 harbour porpoises and 25 bottlenose dolphins that had been beached and died in the Bay of Biscay (between Spain, France, and England). At the time of the study, more harbour porpoises were being found dead in the bay than in previous years. They hypothesized that bottlenose dolphins and harbour porpoises may have had similar enough diets to cause competition and violence between the two species. Photo of a harbour porpoise that received injuries thought to be from abottlenose dolphin before death (circled), from Ross and Wilson (1996)The researchers’ goal was to analyze stomach contents to directly see what each mammal was eating at the time of their death. To do this, Jérôme, Yann, and Vincent removed the stomachs from the harbour porpoise bodies and weighed them with all contents included. After weighing stomach casings separately, they calculated total weight inside of the animals’ stomachs. Then, they washed stomach contents through a filter to separate out larger matter. Now, if you have a weak stomach, this probably wouldn’t be the job for you. Jérôme, Yann, and Vincent separated food items within the stomachs into identifiable categories. It could sometimes be difficult to recognize whole animals in a stomach due to breakdown, so methods like pairing dismantled eyes or counting fish bones was necessary to identify them! This same process was repeated for bottlenose dolphin carcasses. From there, the scientists compared specimens for prey presence, abundance, mass, and size to see if there was overlap between diets of the harbour porpoises and bottlenose dolphins.So what did they find? More food mass, a greater number of species, and a more diverse size range of prey was found in the stomachs of bottlenose dolphins in comparison to harbour porpoises. Although bottlenose dolphins have a habitat that includes more deep-ocean areas while harbor porpoises inhabit coastal surroundings, certain prey species were eaten by both. Since bottlenose dolphins are bigger and hunt in larger groups, they would logically be more dominant in a face-off over a common prey item. Why are they fighting more over the same foods? This shift could be a result of humans harvesting species from the ocean that are diet items for bottlenose dolphins. It could also be a result of warming ocean temperatures that could be changing the dwelling places of available food for bottlenose dolphins. This would explain why more habour porpoises are being attacked by these marine tyrants moving into shallower waters. Poor porpoises, all they want to do is eat their lunch in peace. Who knows, maybe in the next few million years, we’ll see highly evolved harbour porpoises covered in spikes to ward off the dolphins. That’ll teach those bullies! References:Ross, H., & Wilson, B. (1996). Violent Interactions between Bottlenose Dolphins and Harbour Porpoises Proceedings of the Royal Society B: Biological Sciences, 263 (1368), 283-286 DOI: 10.1098/rspb.1996.0043 Spitz, J., Rousseau, Y., & Ridoux, V. (2006). Diet overlap between harbour porpoise and bottlenose dolphin: An argument in favour of interference competition for food? Estuarine, Coastal and Shelf Science, 70 (1-2), 259-270 DOI: 10.1016/j.ecss.2006.04.020 ... Read more »

  • March 28, 2017
  • 12:42 PM
  • 36 views

Caterpillars Recruit Friends with Anal Scraping

by Elizabeth Preston in Inkfish



Newly hatched caterpillars look helpless: they're teensy, soft and juicy, with no parent around for protection. But certain young insects, the masked birch caterpillars, are more capable than they seem. They gather in groups to keep themselves safe. To form those groups, they use a previously undiscovered language of buzzes, vibrations, head banging and butt scraping.



The species, Drepana arcuata, passes through five caterpillar life stages (called instars) on its way to becoming a li... Read more »

Yadav, C., Guedes, R., Matheson, S., Timbers, T., & Yack, J. (2017) Invitation by vibration: recruitment to feeding shelters in social caterpillars. Behavioral Ecology and Sociobiology, 71(3). DOI: 10.1007/s00265-017-2280-x  

  • March 28, 2017
  • 08:04 AM
  • 39 views

Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona by Eoin Carley et al.*

by CESRA in Solar Radio Science

Flares and coronal mass ejections (CMEs) are thought to result from magnetic energy release in the solar corona, often involving the destabilisation of a twisted magnetic structure known as a flux rope (Chen et al. 2011, Webb et al. 2012). This activity may be accompanied by the acceleration of electrons (Kahler 2007, Lin et al. 2011). However, there is ongoing debate on exactly where, when and how this particle acceleration occurs [...]... Read more »

  • March 28, 2017
  • 04:34 AM
  • 56 views

Presenting with the symptoms of autism and then diagnosed with phenylketonuria (PKU)

by Paul Whiteley in Questioning Answers

The case report from Betül Mazlum and colleagues [1] (open-access available here) illustrates once again that (a) the plural 'autisms' exist (see here) and (b) screening for inborn errors of metabolism (IEM) should be an important part of any autism assessment (see here). Indeed, screening for IEM should really be part of assessments for many different labels...Detailing a case report wherein a 3-year old child came to clinical attention for "speech delay and social problems", the authors describe how following a diagnosis of "autism according to DSM-IV criteria" further investigations were undertaken. Said investigations included analysis of blood and urine amino acid levels and, voilà, high levels of phenylalanine were detected and a diagnosis of phenylketonuria (PKU) made. Initiation of a low phenylalanine diet (the treatment of choice for PKU) followed and was accompanied by some important [positive] changes to behaviour and cognition. Of particular note to the presentation of autism we are told that: "At 4 months follow-up improvement was noticed in his eye contact, joined attention and speech."The authors further note: "This case was not at particular risk for PKU at first thought, being born to non-consanguineous parents and during a period when newborn screening with Guthrie test was widely applied in Turkey. Although the child had a heel prick in the hospital where he was delivered, the results are unavailable and therefore whether his sample was analyzed is questionable."OK, this was a case report and whilst an important 'N=1' is not necessarily generalisable to all autism (or rather all autisms). Insofar as the methods talked about for establishing raised phenylalanine - "Blood and urine amino acid chromatography" - I would have liked to have seen a little more detail in relation to the specific 'chromatography' methods used and any results related to another aromatic amino acid (tyrosine). We don't also have any data on follow-up either (repeat biological testing)...PKU is an important but quite rare IEM. This is not however the first time that PKU has been linked to autism or the presentation of autistic traits (see here) particularly in cases of 'untreated' PKU. Aside from PKU providing quite a good template for how diet - certain aspects of diet - can affect behaviour and mental state for some (see here) there are other potential implications and 'correlations' on the back of this work. Not least is the intersection between another intervention measure potentially indicated for PKU - tetrahydrobiopterin (sapropterin or BH4) - and research suggesting that the 'mopping up phenylalanine' properties of this compound might be potentially effective for some cases and facets of autism too (see here) based on double-blind, placebo-controlled trial results [2]."The possibility of a metabolic disorder including PKU should be considered in any child presenting with symptoms of autism, learning or speech problems and PKU should be tested unless the newborn screening results are available." I wouldn't argue with those sentiments [3], allowing for the fact that other correlates should also be considered (see here for example) particularly it seems, when autism appears alongside something like intellectual (learning) disability. The question of whether the quite restrictive low phenylalanine diet typically indicated for PKU might also impact autistic signs and symptoms is something that science still perhaps needs to look into...Music to close, and how about something lively from The King?----------[1] Mazlum B. et al. A late-diagnosed phenylketonuria case presenting with autism spectrum disorder in early childhood. Turk J Pediatr. 2016;58(3):318-322.[2] Klaiman C. et al. Tetrahydrobiopterin as a treatment for autism spectrum disorders: a double-blind, placebo-controlled trial. J Child Adolesc Psychopharmacol. 2013 Jun;23(5):320-8.[3] Bilder DA. et al. Neuropsychiatric comorbidities in adults with phenylketonuria: A retrospective cohort study. Mol Genet Metab. 2017 Mar 6. pii: S1096-7192(17)30052-5.----------Mazlum B, Anlar B, Kalkanoğlu-Sivri HS, Karlı-Oğuz K, Özusta Ş, & Ünal F (2016). A late-diagnosed phenylketonuria case presenting with autism spectrum disorder in early childhood. The Turkish journal of pediatrics, 58 (3), 318-322 PMID: 28266201... Read more »

Mazlum B, Anlar B, Kalkanoğlu-Sivri HS, Karlı-Oğuz K, Özusta Ş, & Ünal F. (2016) A late-diagnosed phenylketonuria case presenting with autism spectrum disorder in early childhood. The Turkish journal of pediatrics, 58(3), 318-322. PMID: 28266201  

  • March 27, 2017
  • 03:12 PM
  • 54 views

Pregnant women modify the labor progress when use warm bath and Swiss ball

by SciELO in SciELO in Perspective | Press Releases

Research demonstrates the use of warm shower and perineal exercises with Swiss ball alone or combined during labor improves fetal well-being, stimulates uterine contractions, reduces labor time and accelerates progression to outcome in normal birth. … Read More →... Read more »

  • March 27, 2017
  • 12:07 PM
  • 60 views

Theory of Mind in Brain Development

by William Yates, M.D. in Brain Posts

Theory of Mind (ToM) is a concept describing the ability to understand what another person is thinking or feeling.Today in my neuroscience medicine news review I ran across a novel, interesting and important research study targeting brain development in ToM.Normally developing children develop ToM around 4 years of age. In the study published in Nature Communications, a research team at the Max Planck Institute in Germany studied white matter development in 3 to 4 year old children.Using a series of neuropsychological tasks, they studied white matter development using diffusion tensor brain imaging as it related to ToM skill.The research team was able to identify the following brain development features in ToM:White matter changes in the temperoparietal regions, the precuneus and the medial prefrontal cortexIncreased white matter connectivity between temperoparietal and inferior frontal brain regionsThese changes were independent of development of non-ToM cognitive abilityThe authors note in the discussion section that non-human primates fail to develop explicit ToM cognitive ability. Non-human primate brain show poor arcuate fascicle connectivity. They note that arcuate fascicle white matter connectivity appears to be key for ToM cognitive skills.This manuscript is available in free full-text format and readers with more interest in this study can access the manuscript by clicking on the citation link below.Follow me on Twitter @WRY999Image of white matter tract in human brain is from the iPad app Brain Tutor.Grosse Wiesmann C, Schreiber J, Singer T, Steinbeis N, & Friederici AD (2017). White matter maturation is associated with the emergence of Theory of Mind in early childhood. Nature communications, 8 PMID: 28322222... Read more »

  • March 27, 2017
  • 04:38 AM
  • 65 views

Detecting stereotypic behaviours through technology

by Paul Whiteley in Questioning Answers

"We have designed an Internet-of-Things (IoT) framework named WearSense that leverages the sensing capabilities of modern smartwatches to detect stereotypic behaviors in children with autism."So said the paper by Amir Mohammad Amiri and colleagues [1] (open-access available here) and, I have to say, something that really piqued my [research] attention. Describing how authors managed to design and construct a smartwatch with the ability to "detect three behaviors, including hand flapping, painting, and sibbing [hitting themselves on the top of their head] that are commonly observed in children with autism" they report some preliminary findings.When I say these are preliminary findings, I do indeed mean preliminary, as a two-phase preliminary trial included data from "12 healthy subjects aged between 23–33" and "two subjects (ages 15 and 16) diagnosed with autism." Aside from the implication that young adults with autism are somehow 'not healthy' (I think the correct terminology should be 'not diagnosed with autism/autism spectrum disorder'), you can perhaps see that much of the data for this study came from artificial, induced behaviours not necessarily produced by those on the spectrum - "The tasks that the subjects were invited to do included three different types for 20 s." I do have some other quibbles about the write-up of this study as per very generalised sentences like: "These stereotypic behaviors happen when a child is trying to regulate the sensory input from their surrounding environment."But I don't want to take anything away from the potential of this kind of research and where, with a bit more study and refinement, it could take many areas of autism research and practice. Accepting the argument that stereotypic behaviours that can accompany autism are not always something that needs to be tinkered with, I can perhaps see a use for this technology when it comes to screening and assessment. If for example, this kind of technology could be applied to something like an ADOS assessment, you could perhaps see how there may be additional information to be garnered (and indeed, built up coincidental to the 'objectivity' linked to such an exam). Coupled with other technology in relation to things like gaze monitoring for example, the potential gets even more exciting. And then also are the potentials of this kind of tracking software in relation to monitoring physical activity and autism (see here for example) or even in the context of epilepsy occurring alongside autism (see here for another WearSense use). There may be lots more to see when it comes to such technology and autism...----------[1] Amiri AM. et al. WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches. Healthcare (Basel). 2017 Feb 28;5(1).----------Amiri AM, Peltier N, Goldberg C, Sun Y, Nathan A, Hiremath SV, & Mankodiya K (2017). WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches. Healthcare (Basel, Switzerland), 5 (1) PMID: 28264474... Read more »

Amiri AM, Peltier N, Goldberg C, Sun Y, Nathan A, Hiremath SV, & Mankodiya K. (2017) WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches. Healthcare (Basel, Switzerland), 5(1). PMID: 28264474  

  • March 26, 2017
  • 08:27 AM
  • 76 views

Multilingual neuromyths

by Madalena Cruz-Ferreira in Being Multilingual

P { margin-bottom: 0.08in; } Neuromyths are misconceptions about how the brain works. They are the topic of the Nature Neuroscience editorial The mythical brain, which highlights that they are as false as they are appealing, and that their appeal is what explains their resilience.Appealing seems to be the key word here, in its sense of ‘engaging’ with little or no rational engagement. Deena Skolnick Weisberg and colleagues showed this in The seductive allure of neuroscience explanations: when asked to choose between alternative nonsensical explanations of the same brain function, their informants systematically preferred the ones containing “logically irrelevant neuroscience information”. The mere mention of intimidating concepts like brain or neurology appears to lend credibility to any statement where they appear, in other words. Statements about the so-called ‘bilingual/multilingual brain’ are no exception, in the wake of the current exponential growth of academic and media news about brains and neuro-prefixed things. This growth reflects a shift in our ways of thinking about our brain along the past couple of decades. Late last century’s trends modelled the brain on the most sophisticated information gathering and processing device of the time, the computer. Since models naturally constrain our ways of thinking about what we’re modelling, our views of the brain came complete with computer-bound characteristics: brain space got allocated once and for all, and brains developed one way, towards decay. Related neuromyths had it that more than one language takes up brain space, or that aged brains lose language learning abilities. Early 21st century findings then spelled the death of brain death myths: ageing, which is what the brain and the rest of our bodies do from the moment we’re born, doesn’t entail brain decay. Brains were all but static, degenerative, limited-capacity CPUs: neural structures and functions evolve and regenerate themselves after all, in response to our experiences and needs, and both young and old brains retain the agility to do so. Brain plasticity duly became the new mantra and, not least, we could capture brains in action through imaging, our latest model. Related neuromyths have it that we now know what’s going on because we can see it, as Leonid Rozenblit and Frank Keil argue in The misunderstood limits of folk science: an illusion of explanatory depth. They show first, that we are experts at fooling ourselves that we “understand complex phenomena with far greater precision, coherence, and depth” than we actually do, and second, that “The illusion for explanatory knowledge is most robust where the environment supports real-time explanations with visible mechanisms.”Image © Thomas Schultz (Wikimedia Commons)Likewise, in What can functional neuroimaging tell the experimental psychologist?, Richard Henson warns us of the “real danger that pictures of blobs on brains seduce one into thinking that we can now directly observe psychological processes”. Blob-based evidence nevertheless continues to flourish, all the way from forensics, as Richard K. Sherwin observes in Visual jurisprudence, to education, as Sanne Dekker and colleagues show in Neuromyths in education: Prevalence and predictors of misconceptions among teachers or Paul A. Howard-Jones shows in Neuroscience and education: myths and messages. The seductive appeal of visual animations is irresistible, in sum, and it naturally sells very well, which is the topic of Diane M. Beck’s study The appeal of the brain in the popular press. But there are two problems. One is that the seduction is selective. Is it true, for example, that there is a bilingual/multilingual ‘advantage’, which may include inhibition of brain deterioration? Ellen Bialystok and colleagues say yes in Bilingualism, aging, and cognitive control: Evidence from the Simon Task, Shanna Kousaie and Natalie A. Phillips say no in Ageing and bilingualism: Absence of a “bilingual advantage” in Stroop interference in a nonimmigrant sample, and J. Bruce Morton and Sarah N. Harper, in What did Simon say? Revisiting the bilingual advantage, reserve judgement about whether multilingualism relates to brain performance at all until we understand what is really causing what. Meanwhile, Angela de Bruin and colleagues, in Cognitive Advantage in Bilingualism. An Example of Publication Bias?, conducted a meta-analysis of studies published between 1999 and 2012 on the so-called ‘bilingual advantage’, to conclude that the advantage may well lie in cherry-picking of findings. A recent issue of the Applied Psycholinguistics journal, dedicated to Bilingualism and neuroplasticity, reviews what (little) we know about this topic, but the myth that multilingualism is ‘good for your brain’ goes on making headlines: it’s simply too appealing to not be true. Apparently, it doesn’t sell to popularise research finding that multilingual brains may be as exciting as monolingual ones – which I, for one, find extremely appealing. The other problem is that academic and media reports don’t speak the same language. Media headlines stating that multilingualism “keeps the brain young” or that you should learn a new language in order to “boost your brain power”, though claiming to draw on scientific research on languages and brains, in fact misrepresent actual findings to go on feeding current neuromyths. In my academic courses, in one of the assignments that became most popular among students, I had them search for wow! media headlines about multilingualism, retrieve the original studies quoted in those pieces, and assess matches between headline and content of the piece, on the one hand, and content of the piece and the studies, on the other. Expectedly, very few matches were found. And unfortunately, given that academic publications aren’t regularly made available outside of academia, very few of us are able to judge for ourselves spin cycles and hype of this kind. Simple repetition of appealing myths doesn’t turn them into facts.Keeping (somewhat) to the topic of what we like to believe, my next post departs from the adult world to check out how children look at their own multilingualism. ... Read more »

Beck, D. (2010) The Appeal of the Brain in the Popular Press. Perspectives on Psychological Science, 5(6), 762-766. DOI: 10.1177/1745691610388779  

  • March 25, 2017
  • 10:32 PM
  • 89 views

Is global warming causing the increase in prevlance of diabetes?

by Craig Payne in Its a Foot Captain, But Not as You Know It

Is global warming causing the increase in the prevalence of diabetes?... Read more »

  • March 25, 2017
  • 02:39 PM
  • 85 views

Shaking dinosaur hips and messing with their heads

by Piter Boll in Earthling Nature

by Piter Kehoma Boll This week brought astonishing news regarding the phylogeny of dinosaurus, as you perhaps have heard or read. New anatomical evidences have completely rebuilt the basis of the dinosaur family tree and I’m here to explain a … Continue reading →... Read more »

  • March 25, 2017
  • 01:14 PM
  • 58 views

The multilingual scapegoat

by Madalena Cruz-Ferreira in Being Multilingual

P { margin-bottom: 0.08in; } Scapegoating has historically been instrumental in alleviating consciences. The fact that scapegoating, as historically, has had no effect whatsoever on what caused those consciences to become burdened in the first place doesn’t seem to deter its continued practice.Multilingualism has served as a handy goat candidate for a good while now. In typically recurrent scenarios, if a child presents with a (suspected) language-related disorder, and that child is multilingual, then the child’s multilingualism is to blame for the disorder. It happened in my family, too. A few weeks into one of my children’s first preschool experience, her teachers reported to me their concern about her behavioural issues. Among other things, she preferred to entertain herself on her own rather than seeking group play, she grabbed at the faces of both children and adults who addressed her, and she was disruptive at story time, when everyone sat on the floor around the reader. The teachers completed their report by sternly advising me that the burden, as they put it, of dealing with two languages from birth might well have started taking its toll on her. You may have guessed what was really going on: the specialist test that I requested at the next paediatric check-up showed that my girl had 40% deafness. If you can’t hear in an environment meant for typical hearing, if you need to have other people face you when they talk to you in order to lip-read and, likewise, if you can’t see their lowered faces when they’re reading to you, my child’s behaviour becomes no issue after all. Throughout my children’s early schooling years, other rounds of this Blame Multilingualism game only served to confirm that the multilingual scapegoat, like its predecessors, didn’t arise out of inherent goat properties but out of our propensity to explain what we don’t understand by means of what we understand even less. In the words of David L. Rosenhan’s report On being sane in insane places: “Whenever the ratio of what is known to what needs to be known approaches zero, we tend to invent ‘knowledge’ and assume that we understand more than we actually do. We seem unable to acknowledge that we simply don’t know.”The reason we don’t understand multilingualism is that we refuse to deal with it as multilingualism: we prefer to check it out as an indicator of (in)conformity to other linguistic behaviours, as is evident from the profuse academic and lay literature reporting findings about multilingualism through the bias of monolingual lenses. Taking other-than-multilingual as a norm expectedly results in assessments of multilingualism as ‘special’, whether special-bad or special-good. Special things demand explanations which depart from the ‘ordinary’ explanatory norms which made them special, and thus self-fulfil their special status. Add to this our readiness to explain things by means of causality, and we’re ready to conclude that some of us are special because we’re multilinguals.Blaming multilingualism for a (suspected) problem is equivalent in practice to diagnosing people with multilingualism. Multilingualism is a problem and must therefore be banished: that’s why so many of us, parents, educators, clinicians, advise monolingualism as a cure. Proclaiming that we’ve found an answer to a problem has an immediate effect, which is to stop asking questions, our own and especially others’: our quest is ended and we may sleep with a clear conscience. Anything, in other words, feels and looks better than simply acknowledging our ignorance. This is why typically developing multilingual children continue to be over-referred to specialist care, wasting precious time as well as human and financial resources. Not to speak of the stigma attached to those diagnosed as ‘special’, of course. As Rosenhan’s unsettling study crucially found, simply entering the special care circle is enough to confirm that special care was needed in the first place, and so that the special diagnosis was warranted: once a special label sticks to you, whatever you do will serve as proof that you deserved to be labelled.Mythologies typically generate their own evidence in this way. This is why scapegoating goes on saving both our faces P { margin-bottom: 0.08in; }and our prejudices. Is it so that we care more for upholding our ingrained beliefs than for the people who come to us for help? What seems to matter is to make the stray sheep return to the normality fold of our collective imaginary: what matters is conformity to an illusionary norm. As Thomas Szasz compellingly shows in The Manufacture of Madness, “Safety lies in similarity”.Believing that multilingualism is the problem further prevents us from accepting it as a norm in itself, blinding us to disordered multilingualism. As Annick De Houwer, Marc H. Bornstein and Diane L. Putnick argue in A bilingual-monolingual comparison of young children’s vocabulary size, if there are any concerns about bi-/multilingual children’s language development, “reasons other than their bilingualism should be investigated.”Next time, I’ll keep to matters of gathering knowledge about multilingualism.... Read more »

  • March 25, 2017
  • 01:06 PM
  • 67 views

Native multilinguals

by Madalena Cruz-Ferreira in Being Multilingual

P { margin-bottom: 0.08in; } Some of my language teaching students sometimes express out loud their heartfelt desire to become native speakers. I was quite baffled the first time I heard this: we’re all native speakers, surely, and we can’t become natives, if we take the word “native” to mean what I supposed it is meant to mean, ‘from birth’. But does it? It turned out that my students’ previous teacher training had included the mantra that “native” means ‘flawless’ in this collocation, and flawless, whatever we take this word to mean, is certainly something that all of us can at least aspire to become. This latter meaning of the word “native” has in fact been made quite explicit in the literature about “second” (or “foreign”) languages – with my profuse apologies for the scare quotes that will crop up all over this post: I’ve no idea what the scared words might mean, in this literature. This meaning explains, for example, why some of us think it a worthwhile endeavour to compare school language learners to “native speakers”, for purposes of language quality assessment. But there is a snag: if learning languages from birth entails flawless use of those languages, how come multilinguals across the board, including simultaneous multilinguals who learn more than one language from Day One, go on being compared to “native speakers”? The thing is that “native speaker” has yet a third meaning, ‘monolingual’, this time a covert one, which nevertheless heeds the overt, systematic practice of comparing any multilinguals to monolinguals. This meaning explains, for example, the virtual absence of acknowledgement that multilinguals can be “native” users of their languages. If we accept that multilingual proficiency should be assessed through comparison with “native” proficiency, then we’re saying that multilinguals and natives are two distinct kinds of language users, since we can’t compare a thing to itself.But there is another snag. If multilinguals aren’t native users of their languages, then they must be “non-native”, by the logic of the assumedly useful labels which populate research on language uses. However, they aren’t, because multilinguals get compared to non-natives, too. In addition, simultaneous multilinguals can’t be “non-native”, if their languages are there for them from Day One, which is one of the meanings of “native”. Multilinguals, in sum, appear to inhabit a Linguistic No Man’s Land.“Day One”, unfortunately, may not be what clinches the issue either. If the language(s) in which we’re brought up from birth happen to be imported languages, then those languages aren’t “ours”. And if we learn a new language in early childhood, though not exactly from Day One, how many days should we count to count as a native user of it? Can I, for example, claim French as native language, having lived with it from just before age 3? Or was I then already way past my native learning prime, as I must have been when I learned my other languages several years later? If you’re interested in the mysteries of “critical periods” which snipe at “native” language learning abilities, Carmen Muñoz and David Singleton’s state of the art discussion, A critical review of age-related research on L2 ultimate attainment, is a must-read. Scare-quoted terminological acrobatics about multilingualism would be hilarious, of course, if it didn’t appear in “serious” research, thereby proving that we’ve no idea what we’re talking about. Have a look in my article First language acquisition and teaching, to see what I mean. The muddle got compounded when researchers developed a preference for labelling the languages of a multilingual by means of numbers, possibly on the belief that identifying things by numbers makes them look scientifically unquestionable. There’s always some “L1” lurking in there somewhere, which means that there must be rankings of L2, ... Ln, where the numbers apparently serve the purpose of showing that languages either politely follow one another or should do so. But what do these numbers mean when, say, simultaneous multilinguals learn one or more new languages in school? Not much, it seems, because we prefer to stick to labels rather than acknowledge their undefinable uselessness. Since “L1” represents an inherently singular concept (in more than one sense of “singular”), the logic of cardinal and ordinal numbering requires that L1 = “first language”, whereby everyone must have a single “first” language, endowed with rights of primogeniture associated with other firstborns. If there’s no single chronological first language, no problem: we just assign one to children, for reasons of administrative expediency, and call it their “mother tongue”. Finally, by the logic that first = “best”, we end up talking about “dominant” and “balanced” languages, and about all the other hopeless labels which do no more than betray our hopeless beliefs that multilinguals are, in fact, funny monolinguals. This state of affairs may well explain why multilingualism goes on being blamed for anything that deviates from monolingualism, to which I’ll return some other day. Meanwhile, the next post, a guest post, goes back to where this post started, to report vivid encounters with “nativeness” from a language teacher who’s also had plenty of reasons to wonder about the meaning of this word.... Read more »

  • March 25, 2017
  • 12:40 PM
  • 64 views

Sign-speech multilinguals

by Madalena Cruz-Ferreira in Being Multilingual

P { margin-bottom: 0.08in; } Opinions and decisions about multilingualism involving sign languages suffer from the same resilient fantasies which have plagued multilingualism in general over the past 100 years or so. With sign languages, however, there’s the aggravating factor that fantasies about them join the chorus. Only the other week, for example, I had a couple of (speech-speech) multilingual friends wonder why all the fuss about sign languages among linguists like me, since these languages are but a set of universal gestural primitives, like rubbing your tummy to indicate you’re hungry, as they put it. Aren’t they?, they nevertheless asked at the end of their reasoning. No, I replied. This would be roughly equivalent to saying that spoken languages are but a set of universal groany primitives to indicate your mood, as I put it. I took this chance to dispel their other illusion, that sign languages are straightforward fingerspelling systems, which draws on the interesting assumption that all signers must be literate. Many sign languages do include fingerspelling components, but the fact that, say, BSL (British Sign Language) and ASL (American Sign Language) use two-handed and one-handed spelling, respectively, for the same printed language, should help reassess the presumed straightforwardness of fingerspelling. In addition, BSL and ASL are as mutually unintelligible as other sign languages around the world. My friends are well educated, cosmopolitan professionals. Their take reflects the overarching myth that sign languages really aren’t languages at all, which goes on shaping policies devised by other professionals, those who have been empowered to deal with language education and who therefore aren’t in the habit of asking questions at the end of their reasonings. In a book chapter discussing The British Sign Language community up to the early 1990s, Paddy Ladd gives a distressing review of the ignorance and associated prejudice which, among other rulings, sanctioned physical violence to ‘cure’ deaf children of their signing ‘compulsion’. Just like, as I reported elsewhere, multilingualism came to be beaten out of hearing schoolchildren, the hands of deaf schoolchildren were tied behind their backs in order to force them to use spoken language. Just like, as I also reported elsewhere, multilingualism came to be medicalised, the language of deaf people was “pathologised” (Ladd’s word). Small wonder, then, that sign-speech multilinguals came to be viewed as doubly ‘handicapped’. When sign languages finally became legitimised, as it were, as objects of linguistic enquiry, sign multilingualism turned out, unsurprisingly, to match speech multilingualism. It comes complete with mixes, as David Quinto-Pozos reports for LSM (Lengua de Señas Mexicana) and ASL in Sign language contact and interference, for example, and with a lingua franca, International Sign, which Anja Hiddinga and Onno Crasborn discuss in Signed languages and globalization. But sign multilingualism remained the business of signers, so hearing communities needn’t bother with the eccentricities of deaf communities. Dealing with sign-speech multilingualism, however, appears to invite regression to hand-tied Fantasy Land: sign languages may be languages after all, but they are less so than spoken ones and should therefore not take priority in (so-called) multilingual education. It may help to understand that we’re talking about difference here, not winner-takes-it-all competition of gradable merits. It is as useful to compare the contexts of use of distinct linguistic modes as it’s useful to compare multilinguals and monolinguals. Insisting on doing so fails to recognise one of the many paradoxes reflecting our perennial difficulty in defining what languages are: do we want to say that speech beats sign, hands down, because we’re persuaded that auditory resources rank higher than visual ones in linguistic sophistication? Or should we rank those resources the other way around, because we believe that spoken languages are subsidiary to spelt ones? Language is as independent of the modes we’ve found to represent it – whether natural, sense-bound ones like sight, hearing, touch, or artificial ones like print – as music is independent of the instruments (our voice included) through which we produce it. What’s more, our senses seldom serve us to the exclusion of other senses. Manual gestures, for example, are intrinsic to spoken interaction, where attention to both visual and sound clues necessarily assists (de)coding. There’s even evidence that adequate gesturing enhances learning, as Martha W. Alibali and colleagues showed for a speech-based maths class in Students learn more when their teacher has learned to gesture effectively. In this sense, speakers and signers alike are multimodal users of language, and so are all of us, speakers or signers, who are literate. There may be some overlap between gestural uses in spoken and signed interaction, as Trevor Johnston argued for pointing gestures in Towards a comparative semiotics of pointing actions in signed and spoken languages, but the fundamental issue is that signs and speech belong to two different linguistic modes, each with their rules, standards and practices. Precisely for this reason, sign-speech multilinguals can avail themselves of means of linguistic expression which monomodal interaction lacks, in that “distinct modalities allow for simultaneous production of two languages”, as Karen Emmorey and colleagues discuss in Bimodal bilingualism. This means that sign-speech multilinguals, like any language users, must draw on the whole of their linguistic resources in order to be able to develop as human beings. The Position Statement on Early Cognitive and Language Development and Education of Deaf and Hard of Hearing Children, adopted by the NAD (National Association of the Deaf, USA) in June this year, makes for as engrossing reading as Paddy Ladd’s chapter – with many thanks to Beppie van den Bogaerde, who brought this publication to my attention on Twitter, @HU_DeafStudies. The document examines the relationship between sign, speech and print modes, debunking the usual myths about minority languages causing delayed development of mainstream languages (why never the other way around, one wonders?), about the primacy of spoken languages over signed ones, about reading abilities presupposing “... Read more »

Alibali, M., Young, A., Crooks, N., Yeo, A., Wolfgram, M., Ledesma, I., Nathan, M., Breckinridge Church, R., & Knuth, E. (2013) Students learn more when their teacher has learned to gesture effectively. Gesture, 13(2), 210-233. DOI: 10.1075/gest.13.2.05ali  

  • March 25, 2017
  • 05:37 AM
  • 91 views

Including the "full intellectual range" in autism vision research

by Paul Whiteley in Questioning Answers

The paper by Alyse Brown and colleagues [1] (open-access available here) is probably not going to gain any significant media headlines (unlike other recent studies - see here and see here) but does cover a rather important question regarding the autism research landscape: how representative is autism research?Specifically looking at the collected research on visual processing (distinct from physical issues with the eyes that still require greater awareness) with autism in mind, the authors surveyed the research literature to determine "what extent the ASD with-ID [intellectual disability] population has been excluded from visual research." Intellectual or learning disability is one of the more frequently over-represented comorbidities that can accompany a diagnosis of autism or autism spectrum disorder (ASD). Their answer: "our searches indicate that 80% of the vision research associated with ASD is representative of less than 60% of the appropriate population, i.e., those with ASD without ID while the ASD with ID group who we argue currently represent 42% of the ASD population, have not been adequately considered."You may well quibble with the "recalculation of ASD prevalence figures, using the criteria of DSM-5" as a means of calculating that '~40% of those with autism have ID too' figure. For me however, the message is quite stark: autism research - specifically related to visual processing issues - is not yet representative of  'all autism'."Reluctance to test individuals who are below 80 in IQ is presumably a practical stance as the data collected from these individuals are often hard to obtain, and often close to floor level performance." The authors note however that the presence of ID alongside autism in the area of visual processing is not something that cannot be 'overcome' by researchers with some creative thinking and a few modification(s) to their experimental designs. Indeed, visual processing research lends itself well to quite a few alterations to methods [2]...How applicable might these results be to other areas of autism research? Well, we just don't know. I daresay that quite a lot of the 'psychology' based autism research in particular might show a bias towards autism without intellectual disability for just those reasons listed above. The problem then of grand, over-arching generalisations to 'all autism' on the basis of results from the more 'cognitively-able' becomes apparent. Of course, in these days of the plural 'autisms' (see here) and the realisation that 'heterogeneity means heterogeneity' when it comes to autism (see here) one could argue that even characterisations based on the presence of ID or not when it comes to autism are equally 'simplistic' and equally 'useless'. How many autisms might well have an ID element to them? Is ID a comorbidity or something rather more central to some of the autisms? These questions and related others are ones that autism research as a whole will eventually have to start looking at and taking into account.And going back to the issue of eye disorders being potentially over-represented and under-diagnosed in relation to autism, the paper by Mouridsen and colleagues [3] reiterates that intellectual ability when accompanying autism needs more health equality: "The rate of eye disorder was particularly high (24.5%) in those with a co-occurring profound or severe learning disability (IQ < 50)."----------[1] Brown AC. et al. Vision Research Literature May Not Represent the Full Intellectual Range of Autism Spectrum Disorder. Front Hum Neurosci. 2017 Feb 14;11:57.[2] Boot FH. et al. Delayed visual orienting responses in children with developmental and/or intellectual disabilities. J Intellect Disabil Res. 2013 Dec;57(12):1093-103.[3] Mouridsen SE. et al. Eye Disorders among Adult People Diagnosed with Infantile Autism in Childhood: A Longitudinal Case Control Study. Ophthalmic Epidemiol. 2017 Mar 15:1-4.----------Brown AC, Chouinard PA, & Crewther SG (2017). Vision Research Literature May Not Represent the Full Intellectual Range of Autism Spectrum Disorder. Frontiers in human neuroscience, 11 PMID: 28261072... Read more »

  • March 24, 2017
  • 01:00 PM
  • 46 views

Lines that do not meet? Different perspectives of psychology upon organizations and work

by SciELO in SciELO in Perspective | Press Releases

Is it possible to attach a single label to the different approaches and professional practices of Psychology regarding work? Are there irreconcilable differences between psychology approaches, for example, an approach with a concentrated focus on management and another focused on the health of workers? … Read More →... Read more »

join us!

Do you write about peer-reviewed research in your blog? Use ResearchBlogging.org to make it easy for your readers — and others from around the world — to find your serious posts about academic research.

If you don't have a blog, you can still use our site to learn about fascinating developments in cutting-edge research from around the world.

Register Now

Research Blogging is powered by SMG Technology.

To learn more, visit seedmediagroup.com.